The Correspondence Between Proofs and Programs

And how Mathematics informs Programming Language Design

Jules Poon

2024 Dec

whoami

- Jules
- Undergrad
- Interested in Programming Languages and Math
 - Currently interested in Algebra
 - Worked briefly on CPython's JIT

whoami

- Jules
- Undergrad
- Interested in Programming Languages and Math
 - Currently interested in Algebra
 - Worked briefly on CPython's JIT
- Will do SWE for money { available for summer intern 2025 hmu }
 - > juliapoo.github.io { full of cool stuff }

whoami

- Jules
- Undergrad
- Interested in Programming Languages and Math
 - Currently interested in Algebra
 - Worked briefly on CPython's JIT
- Will do SWE for money { available for summer intern 2025 hmu }
 - > juliapoo.github.io { full of cool stuff }

Special thanks to **@Patricia** { **linkedin.com/in/patmloi** } for her invaluable feedback, without which this would have been a completely different talk.

Curry Howard Correspondence

Mathematical Proofs \iff Programs

 First noticed by Haskell Curry in 1934, before computers, or programming as we know today

Curry Howard Correspondence

Mathematical Proofs \iff Programs

- First noticed by Haskell Curry in 1934, before computers, or programming as we know today
- { personal opinion } One of the biggest bridge connecting Mathematics and Computer Science

Curry Howard Correspondence

 $Mathematical \ Proofs \Longleftrightarrow Programs$

- First noticed by Haskell Curry in 1934, before computers, or programming as we know today
- { personal opinion } One of the biggest bridge connecting Mathematics and Computer Science
- Majority of the writing on this is targeted at Mathematicians, not Computer People.

Curry Howard Correspondence

Mathematical Proofs \iff Programs

Curry Howard Correspondence

```
Mathematical Proofs \iff Programs
```

Uses of the Correspondence

Powers Interactive Theorem Provers

- For Mathematicians: Verifies a mathematical argument is sound
- For Computer People: Formal Verification of software/hardware

Curry Howard Correspondence

```
Mathematical Proofs \iff Programs
```

Uses of the Correspondence

Powers Interactive Theorem Provers

- For Mathematicians: Verifies a mathematical argument is sound
- For Computer People: Formal Verification of software/hardware
 - Proving an implementation is correct for all inputs
 - Used in safety critical software (like airbags to ensure compliance)
 - Intel uses it to verify microcode

Interactive Theorem Provers

Questions:

What is a Mathematical Proof?

Interactive Theorem Provers

Questions:

- What is a Mathematical Proof?
- What does it mean for reasoning to be **sound**?

Interactive Theorem Provers

Questions:

- What is a Mathematical Proof?
- What does it mean for reasoning to be **sound**?
- How to program a computer to verify a proof's correctness?

Interactive Theorem Provers

Questions:

- What is a Mathematical Proof?
- What does it mean for reasoning to be **sound**?
- How to program a computer to verify a proof's correctness?

Example of a Proposition

How can we prove the following?

 $\forall A,B \text{ boolean}: (A \wedge B) \rightarrow (B \wedge A)$

(A and B) is equivalent to (B and A)

To Prove

$\forall A,B \text{ boolean}: (A \land B) \leftrightarrow (B \land A)$

To Prove

$\forall A,B \text{ boolean}: (A \wedge B) \leftrightarrow (B \wedge A)$

Attempt 1: Bruteforce (the usual way we test software)

A, *B* can either be **True** or **False**. We can try all 4 possibilities and show that the expression is always **True**.

To Prove

$\forall A,B \text{ boolean}: (A \wedge B) \leftrightarrow (B \wedge A)$

Attempt 1: Bruteforce (the usual way we test software)

A, *B* can either be **True** or **False**. We can try all 4 possibilities and show that the expression is always **True**.

A	В	$A \wedge B$	$B \wedge A$	
False	False	False	False	 Image: A set of the set of the
False	True	False	False	 Image: A second s
True	False	False	False	
True	True	True	True	 Image: A second s

Problem: What if the domain is infinite?

 $\forall x,y \in \mathbb{Z}_{\geq 0}: x+y \geq x$ For any $x,y \text{ integers } \geq 0, x+y \geq x$

Problem: What if the domain is infinite?

 $\forall x,y \in \mathbb{Z}_{\geq 0}: x+y \geq x$ For any $x,y \text{ integers} \geq 0, x+y \geq x$

• We can no longer try every possible value

Problem: What if the domain is infinite?

 $\forall x,y \in \mathbb{Z}_{\geq 0}: x+y \geq x$ For any $x,y \text{ integers } \geq 0, x+y \geq x$

- We can no longer try every possible value
- We need to program the computer to reason.

To Prove

$$\forall x, y \in \mathbb{Z}_{\geq 0} : x + y \geq x$$

To Prove

$$\forall x,y \in \mathbb{Z}_{\geq 0}: x+y \geq x$$

Attempt 2: Define the constructs to the computer and compose theorems

The computer needs to know

- What $\mathbb{Z}_{\geq 0}$ is.
 - Understand all of its properties and statements you can say about it
- What \forall , +, \geq means
- How to combine reasoning steps together in a sound way

To Prove

$$\forall x,y \in \mathbb{Z}_{\geq 0}: x+y \geq x$$

Attempt 2: Define the constructs to the computer and compose theorems

The computer needs to know

- What $\mathbb{Z}_{\geq 0}$ is.
 - Understand all of its properties and statements you can say about it
- What \forall , +, \geq means
- How to combine reasoning steps together in a sound way

Very difficult problem! Gives rise to the idea of a Proof System.

Proof System

A framework which one can prove statements.

Proof System

A framework which one can prove statements.

Consists of:

- 1. Formal Language: A language to write formulas in.
- 2. Rules of Inference: How to reason to prove statements.
- 3. Axioms: Assumptions, statements assumed true.

Example of a (non-trivial but easy) Mathematical Proof Proposition: $\sqrt{2}$ is irrational (cannot be a fraction)

Example of a (non-trivial but easy) Mathematical Proof Proposition: $\sqrt{2}$ is irrational (cannot be a fraction) **Proof**:

- 1. Suppose $\sqrt{2} = \frac{a}{b}$ in simplified form.
- 2. Then $2b^2 = a^2$.
- 3. Since $2b^2$ is even, a^2 is even, so a is even.
- 4. Since a^2 is even, $2b^2$ is divisible by 4, so b^2 is even, and b has to be even.
- 5. Hence both a and b are even.
- 6. But $\frac{a}{b}$ is supposed to be simplified form, a contradiction!
- 7. Hence our assumption that $\sqrt{2} = \frac{a}{b}$ is not true!

Reflection Questions:

- Can you figure out what you need to define to a computer to understand this proof?
- Can you figure how to encode ways one can **compose reasoning**?

Taster in what a Computer needs: { a rabbithole everywhere }

• What is a natural number?

Peano's 6 Axioms: 1. $\forall x, 0 \neq S(x)$ 2. $\forall x, y(S(x) = S(y) \Rightarrow x = y)$ 3. $\forall x(x + 0 = x)$...

• What is an integer?

$$\mathbb{Z}\cong \mathbb{N}^2/\sim, \text{where } (a,b)\sim (c,d) \text{ iff } a+d=b+c$$

• What is a fraction?

$$\mathbb{Q} \cong \mathbb{Z}^2 / \sim$$
, where $(a, b) \sim (c, d)$ iff $ad = bc$

Work not in Proof Systems but in Programs

Work not in Proof Systems but in ProgramsProof System SideProgramming SideFormulaTypeProofTerm { valid program }Formula has a ProofType has a TermSimplification of ProofRunning of Term

Work not in Proof Systems but in ProgramsProof System SideProgramming SideFormulaTypeProofTerm { valid program }Formula has a ProofType has a TermSimplification of ProofRunning of Term

If we want to verify the **Proof** of a **Formula**,

- 1. Convert Formula to a Type in the programming language.
- 2. Convert **Proof** to a **Term** in the programming language.
- 3. Computer verifies the **Term** has the correct **Type** in the language.

For every Proof System, we can define a Programming Language where finding a Proof

finding a Term with the correct Type

Demonstrate the correspondence between Proofs and Programs:

We'll be constructing the **most basic** Programming Language and Proof System, and demonstrate a clear linkage between the two.

Demonstrate the correspondence between Proofs and Programs:

We'll be constructing the **most basic** Programming Language and Proof System, and demonstrate a clear linkage between the two.

- 1. Untyped Lambda Calculus { programming language }
- 2. Simply Typed Lambda Calculus { programming language }
- 3. Proof System (\land and \rightarrow) { proof system }
- 4. Curry Howard Correspondence { **proof** \leftrightarrow **programs** }
- 5. What now?

Untyped Lambda Calculus { programming language }

Lambda Expressions { in Python }

f = lambda x: x def f(x): return x

Lambda Expressions { in Untyped Lambda Calculus }

 $\lambda x f. f(x)$ is a Term corresponding to lambda x: lambda f: f(x)

Lambda Expressions { in Python }

f = lambda x: x def f(x): return x

Lambda Expressions { in Untyped Lambda Calculus }

 $\lambda x f. f(x)$ is a Term corresponding to lambda x: lambda f: f(x)

$$\lambda \quad \underbrace{xf}_{} \quad . \quad \underbrace{f(x)}_{}$$

arguments operation

Lambda Expressions { in Python }

f = lambda x: x def f(x): return x

Lambda Expressions { in Untyped Lambda Calculus }

 $\lambda x f. f(x)$ is a Term corresponding to lambda x: lambda f: f(x)

$$\lambda \quad \underbrace{xf}_{} \quad \cdot \quad \underbrace{f(x)}_{}$$

arguments operation

- Arguments are Curried: $\lambda x f. \text{ op} \cong \lambda x.(\lambda f. \text{ op})$
 - Python: lambda x,f: <op> \rightarrow lambda x: lambda f: <op>
 - Every "function" has 1 argument and 1 return value

Two Concepts of Untyped Lambda Calculus

$$\underbrace{\lambda x f}_{} \quad . \quad \underbrace{f(x)}_{}$$

abstraction application

- 1. Abstraction aka function definition { Introduction of abstraction }
- 2. Application aka function calling { Elimination of abstraction }

Two Concepts of Untyped Lambda Calculus

$$\underbrace{\lambda x f}_{} \quad . \quad \underbrace{f(x)}_{}$$

abstraction application

- 1. Abstraction aka function definition { Introduction of abstraction }
- 2. Application aka function calling { Elimination of abstraction }

Language Features should come in pairs of Introduction and Elimination.

- Introduction: Definition
- Elimination: Consequences of Definition

Gives a language some nice properties.

Eliminating Brackets

- Brackets () are used to indicate Order of Operations
- Impose rules to avoid writing extra brackets for clarity

Eliminating Brackets

- Brackets () are used to indicate Order of Operations
- Impose rules to avoid writing extra brackets for clarity

Rules of Order of Operation

- Application is left-associative
 - MNP is (M(N))(P)

Eliminating Brackets

- Brackets () are used to indicate Order of Operations
- Impose rules to avoid writing extra brackets for clarity

Rules of Order of Operation

- Application is left-associative
 - MNP is (M(N))(P)
- Application has higher precedence than Abstraction { like × vs + }
 - $\lambda x.MN$ is $\lambda x.(MN)$ and **not** $(\lambda x.M)N$

Eliminating Brackets

- Brackets () are used to indicate Order of Operations
- Impose rules to avoid writing extra brackets for clarity

Rules of Order of Operation

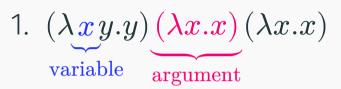
- Application is left-associative
 - MNP is (M(N))(P)
- Application has higher precedence than Abstraction { like × vs + }
 - $\lambda x.MN$ is $\lambda x.(MN)$ and **not** $(\lambda x.M)N$

 $\lambda x.xz(\lambda y.xy) \Longleftrightarrow \lambda x.(x(z)(\lambda y.x(y)))$

Executing an example program

1. $(\lambda xy.y)(\lambda x.x)(\lambda x.x)$

Executing an example program



- We replace variable x in the body of $(\lambda xy.y)$ with the argument $(\lambda x.x)$.
 - Since the body of $(\lambda xy.y)$ is $\lambda y.y$, which does not contain x
 - We simply return the body $\lambda y.y.$
 - $\blacktriangleright \ (\lambda xy.y)(\lambda x.x) \to (\lambda y.y)$
- In Python: (lambda x: lambda y: y)(lambda x: x) -> (lambda y: y)

Executing an example program

1. $(\lambda xy.y)(\lambda x.x)(\lambda x.x)$ 2. $(\lambda y.y)(\lambda x.x)$

Executing an example program

- 1. $(\lambda xy.y)(\lambda x.x)(\lambda x.x)$ 2. $(\lambda y.y)\underbrace{(\lambda x.x)}_{\text{variable argument}}$
- We replace variable y in the body of $(\lambda y.y)$ with the argument $(\lambda x.x)$.
 - Since the body of $(\lambda y.y)$ is y,
 - We replace the body $y \rightarrow \lambda x.x$ and return it.
 - $\blacktriangleright \ (\lambda y.y)(\lambda x.x) \to (\lambda x.x)$
- In Python: (lambda y: y)(lambda x: x) -> (lambda x: x)

Executing an example program

- 1. $(\lambda xy.y)(\lambda x.x)(\lambda x.x)$ 2. $(\lambda y.y)(\lambda x.x)$
- 3. *λx.x*

Executing an example program

- 1. $(\lambda xy.y)(\lambda x.x)(\lambda x.x)$
- 2. $(\lambda y.y)(\lambda x.x)$
- 3. $\lambda x.x$ { stop when we can't perform Application }

When we can't reduce a term anymore, we call the term **normal**.

- We write $M \twoheadrightarrow N$ if we can reduce a term M to a term N.
- $\boldsymbol{\cdot} \hspace{0.1 in} (\lambda xy.y)(\lambda x.x)(\lambda x.x)\twoheadrightarrow \lambda x.x$

Executing an example program

1. $(\lambda x.xx)(\lambda x.xx)$

Executing an example program

1. $(\lambda x.xx)(\lambda x.xx)$ 2. $(\lambda x.xx)(\lambda x.xx)$ 3. ...

Executing an example program

1. $(\lambda x.xx)(\lambda x.xx)$ 2. $(\lambda x.xx)(\lambda x.xx)$ 3. ...

Program above **does not converge**. It has no **normal form**.

• Later, we'll see that Types avoid such Terms that do not converge.

Simply Typed Lambda Calculus

Lambda Calculus but every **Term** is **Typed**

- Term t has a Type T, written as t : T. { like Python's Type Annotations }
- Later, we'll map every **Type** into a **Formula**.

Simply Typed Lambda Calculus

Lambda Calculus but every **Term** is **Typed**

- Term t has a Type T, written as t : T. { like Python's Type Annotations }
- Later, we'll map every **Type** into a **Formula**.

Types

- Atomic Types *A*, *B*, Basic building blocks for Types.
- Composite Types. Types built-upon other Types.
 - { we'll see them later } $A \to B, A \times B$

Typing Rules

Rule λI : If y : B, then $\lambda x^A \cdot y : A \to B$

- x^A states x variable is of type A.
- λI is rule for Abstraction (I for Introduction)

Rule λE : If $f : A \to B$ and x : A, then fx : B

• λE is rule for **Application** (*E* for **Elimination**)

Typing Rules

Rule λI : If y: B, then $\lambda x^A \cdot y: A \to B$

- x^A states x variable is of type A.
- λI is rule for Abstraction (I for Introduction) Notation

 $\frac{\text{Premises}}{\text{Conclusion}} \text{ Name-of-rule} \implies \underbrace{ \begin{array}{c} [x:A]^x \text{ if we can assume that } x:A, \\ \vdots \\ y:B \text{ we'll get } y:B, \\ \underbrace{y:B \text{ we'll get } y:B, \\ \underbrace{\lambda x^A.y:A \to B} \underbrace{\lambda I^x \\ \underbrace{\lambda I^x}_{\text{rule}} \\ \text{name of rule} \end{array}}$

Typing Rules

$$[x:A]^{x}$$

$$\vdots$$

$$\frac{y:B}{\lambda x^{A}.y:A \to B} \lambda I^{x} \qquad \frac{f:A \to B \quad x:A}{fx:B} \lambda E$$

Examples

$$\lambda x^A f^{A \to B}.fx \; : \; A \to ((A \to B) \to B)$$

We take \rightarrow to be **right-associative**:

- · $A \to ((A \to B) \to B)$ is written as $A \to (A \to B) \to B$
- Functional programmers might recognise this notation for typing functions

Examples

$$\lambda x^A f^{A \to B} . fx \; : \; A \to ((A \to B) \to B)$$

We can form a Justification Tree for the Type by composing typing rules.

Examples

$$\lambda x^A f^{A \to B} . fx : A \to ((A \to B) \to B)$$

$$[f: A \to B]^f$$
 $[x: A]^x$

- We first try to type the body fx
- We know we can assume $f : A \rightarrow B$ and x : A.
- We'll track these assumptions as f and x.

Examples

$$\lambda x^A f^{A \to B} . fx : A \to ((A \to B) \to B)$$

$$\frac{[f:A \to B]^{f} \quad [x:A]^{x}}{fx:B} \lambda E$$

• Next we can apply rule λE to type fx:B

Examples

$$\lambda x^A f^{A \to B} fx : A \to ((A \to B) \to B)$$

$$\frac{[f:A \to B]^{f} \quad [x:A]^{x}}{fx:B} \lambda E$$
$$\frac{fx:B}{\lambda f^{A \to B}.fx:(A \to B) \to B} \lambda I^{f}$$

• Next we can apply rule λI^f to consume the assumption $[f: A \to B]^f$.

Examples

$$\lambda x^A f^{A \to B} fx : A \to ((A \to B) \to B)$$

$$\begin{array}{ll} \displaystyle \frac{[f:A \to B]^{f} & [x:A]^{x}}{fx:B} \lambda E \\ \hline \\ \displaystyle \frac{fx:B}{\lambda f^{A \to B}.fx:(A \to B) \to B} \lambda I^{f} \\ \hline \\ \displaystyle \lambda x^{A} f^{A \to B}.fx:A \to (A \to B) \to B \end{array} \lambda I^{x} \end{array}$$

• Next we can apply rule λI^x to consume the assumption $[x:A]^x$.

Examples

$$\lambda x^A f^{A \to B} . fx : A \to ((A \to B) \to B)$$

$$\frac{\begin{bmatrix} f:A \to B \end{bmatrix}^{f} \quad [x:A]^{x}}{fx:B} \lambda E}{\frac{\lambda f^{A \to B} fx:(A \to B) \to B}{\lambda I^{f}}} \lambda I^{f}} \lambda I^{A \to B} \lambda I^{x}$$

- $[f: A \to B]^f$ must accompany a λI^f rule.
- $[x:A]^x$ must accompany a λI^x rule.

It'll be nice if our langauge can return more than 1 value.

It'll be nice if our langauge can return more than 1 value.

Adding Pairs in the Language

- $\cdot \langle x, y \rangle$ introduces a Pair
- π_1 and π_2 eliminates a Pair:
 - $\blacktriangleright \ \pi_1(\langle x,y\rangle)=x \text{, } \pi_2(\langle x,y\rangle)=y$

It'll be nice if our langauge can return more than 1 value.

Adding Pairs in the Language

- $\langle x, y \rangle$ introduces a Pair
- π_1 and π_2 eliminates a Pair:
 - $\blacktriangleright \ \pi_1(\langle x,y\rangle)=x \text{, } \pi_2(\langle x,y\rangle)=y$

Typing Rules for Pairs: Product Types

$$\frac{X:A \quad Y:B}{\langle X,Y\rangle: \underbrace{A\times B}_{\text{product type}}} \pi I \quad \frac{L:A\times B}{\pi_1 L:A} \pi_1 E \quad \frac{L:A\times B}{\pi_2 L:B} \pi_2 E$$

Example with Product Types

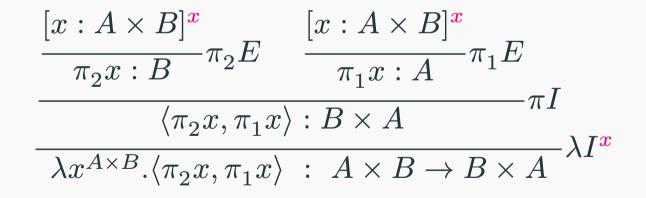
Function that reverses the order of a **Pair**:

$$\lambda x^{A \times B} . \langle \pi_2 x, \pi_1 x \rangle \ : \ A \times B \to B \times A$$

Example with Product Types

Function that reverses the order of a **Pair**:

$$\lambda x^{A \times B} . \langle \pi_2 x, \pi_1 x \rangle \ : \ A \times B \to B \times A$$



Typing terms

Given an **untyped term**, we can assign **Types** to make the program valid in the **Simply Typed Lambda Calculus**

• E.g., Function is **applied** with the correct **types**.

Typing terms

Given an **untyped term**, we can assign **Types** to make the program valid in the **Simply Typed Lambda Calculus**

- E.g., Function is **applied** with the correct **types**.
- $(\lambda x^{A}.x) (\lambda x^{A}.x)$ is not correctly typed. (TypeError)

Type $A \rightarrow A$

Typing terms

Given an **untyped term**, we can assign **Types** to make the program valid in the Simply Typed Lambda Calculus

- E.g., Function is **applied** with the correct **types**.
- $(\lambda x^{A}.x) (\lambda x^{A}.x)$ is not correctly typed. (TypeError)

• $(\lambda x^{A \to A}.x)(\lambda x^{A}.x)$ is correctly typed.

Typing terms

Given an **untyped term**, we can assign **Types** to make the program valid in the **Simply Typed Lambda Calculus**

- E.g., Function is **applied** with the correct **types**.
- $(\lambda x^A . x) (\lambda x^A . x)$ is not correctly typed. (TypeError)

$$\begin{array}{c} \text{Type } A \rightarrow A \\ A \rightarrow A \\ m \end{pmatrix} (\lambda m A \\ m) \text{ is constrained} \end{array}$$

$$(\lambda x^{A \to A}.x)(\lambda x^{A}.x)$$
 is correctly typed.

Our example program $(\lambda x y. y)(\lambda x. x)(\lambda x. x)$ can be typed as such: $(\lambda x^{A \to A} y^{A \to A}. y)(\lambda x^{A}. x)(\lambda x^{A}. x)$

Are all Untyped Lambda terms Typeable (in our language)?

- No. $(\lambda x.xx)(\lambda x.xx)$ is not typeable.
- Intuition: It runs forever, we need a recursive type to represent such terms. This feature does not exist in our very simple language.

Are all Untyped Lambda terms Typeable (in our language)?

No. $(\lambda x.xx)(\lambda x.xx)$ is not typeable.

• Intuition: It runs forever, we need a recursive type to represent such terms. This feature does not exist in our very simple language.

Types **restricts** what are considered programs.

• Intended. Gives our language some nice properties.

Simply Typed Lambda Calculus is Strongly Normalising

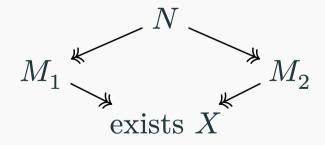
• Informal: All programs finish evaluating in finite steps.

Simply Typed Lambda Calculus is Strongly Normalising

• Informal: All programs finish evaluating in finite steps.

Simply Typed Lambda Calculus has the Church-Rosser property

- Informal: No matter how we evaluate, we'll get the same normal form.
- If $N \twoheadrightarrow M_1$ and $N \twoheadrightarrow M_2$, then there exists an X with $M_1 \twoheadrightarrow X$ and $M_2 \twoheadrightarrow X$.



All programs in Simply Typed Lambda Calculus evaluate in finite steps to a unique normal form

Determine if two programs are equivalent:

- 1. Evaluate both programs (finishes in finite steps)
- 2. Compare results (equal up to variable renaming)

Determine if two programs are equivalent:

- 1. Evaluate both programs (finishes in finite steps)
- 2. Compare results (equal up to variable renaming)

Example:

$$\begin{aligned} & (\lambda x^{A \to A} y^{A \to A} . y) (\lambda x^{A} . x) (\lambda x^{A} . x) \twoheadrightarrow \lambda x^{A} . x \\ & (\lambda x^{A \to A} . x) (\lambda z^{A} . z) \qquad \qquad \Rightarrow \lambda z^{A} . z \end{aligned}$$

Since $\lambda x^A . x$ and $\lambda z^A . z$ are equal up to variable renaming, **both programs** are equivalent.

Language for Formulas

- Consists of atomic (hypothesis) represented as letters A, B, C, ...
 - atomics can either be True or False
- Logical connectors \bigwedge_{and} and $\xrightarrow{\rightarrow}$, and () to indicate order of operations

E.g., $A \to B \to (B \land A)$ is a Formula:

• If we assume A, and we assume B, then $(B \land A)$.

Rules of Inference

For \land connective:

$$\frac{A}{A \wedge B} \wedge I \quad \frac{A \wedge B}{A} \wedge_1 E \quad \frac{A \wedge B}{B} \wedge_2 E$$

Rules of Inference

For \land connective:

$$\frac{A \quad B}{A \wedge B} \wedge I \quad \frac{A \wedge B}{A} \wedge_1 E \quad \frac{A \wedge B}{B} \wedge_2 E$$

For \rightarrow connective:

if by assuming $A [A]^{x}$ (track hypothesis with x) we can conclude B B Bthen, $A \to B$ via rule $I^{x} A \to B \to I^{x} \frac{A \to B A}{B} \to E$

Example: Prove that $(A \land B) \rightarrow (B \land A)$

Example: Prove that $(A \land B) \rightarrow (B \land A)$

$$\frac{[A \wedge B]^{\boldsymbol{x}}}{B} \wedge_2 E \qquad \frac{[A \wedge B]^{\boldsymbol{x}}}{A} \wedge_1 E$$

- Lets assume $(A \land B)$ is true (we'll track this hypothesis with x).
- From inference rules $\wedge_2 E$ and $\wedge_1 E$, we'll obtain B and A is true.

Example: Prove that $(A \land B) \rightarrow (B \land A)$

$$\frac{[A \wedge B]^{x}}{B} \wedge_{2} E \quad \frac{[A \wedge B]^{x}}{A} \wedge_{1} E}{B \wedge A} \wedge I$$

• From $\wedge I$, we can conclude $B \wedge A$ is true

Example: Prove that $(A \land B) \rightarrow (B \land A)$

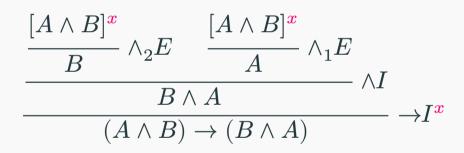
$$\frac{\frac{[A \wedge B]^{x}}{B} \wedge_{2} E}{\frac{A \wedge B^{x}}{A} \wedge_{1} E} \xrightarrow{A \wedge I} A \xrightarrow{B \wedge A} A \xrightarrow{A \cap I} A$$

• Finally, with rule, $\rightarrow I^x$ we consume the hypothesis $[A \land B]^x$.

<u>Curry Howard Correspondence { $proof \leftrightarrow programs$ }</u>

Correspondence

Proof that $(A \land B) \rightarrow (B \land A)$ | **Type of** $\lambda x^{A \times B} . \langle \pi_2 x, \pi_1 x \rangle$



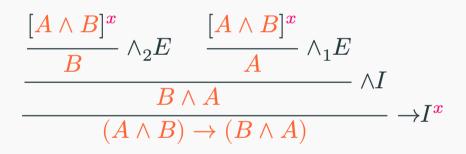
$$\frac{\frac{[x:A\times B]^{x}}{\pi_{2}x:B}\pi_{2}E}{\frac{\langle \pi_{2}x,\pi_{1}x\rangle:B\times A}{\langle \pi_{2}x,\pi_{1}x\rangle:B\times A}\pi_{1}E}$$

$$\frac{\frac{\langle \pi_{2}x,\pi_{1}x\rangle:B\times A}{\langle \pi_{2}x,\pi_{1}x\rangle:X}\pi_{1}E}{\lambda x^{A\times B}\cdot\langle \pi_{2}x,\pi_{1}x\rangle:X}$$

<u>Curry Howard Correspondence { $proof \leftrightarrow programs$ }</u>

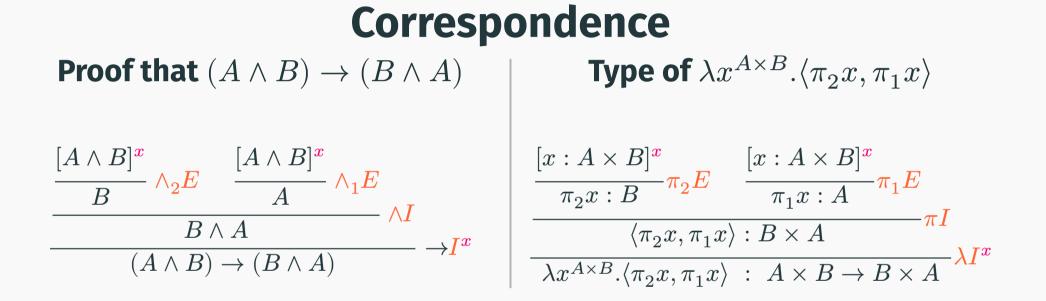
Correspondence

Proof that $(A \land B) \rightarrow (B \land A)$ | **Type of** $\lambda x^{A \times B} . \langle \pi_2 x, \pi_1 x \rangle$



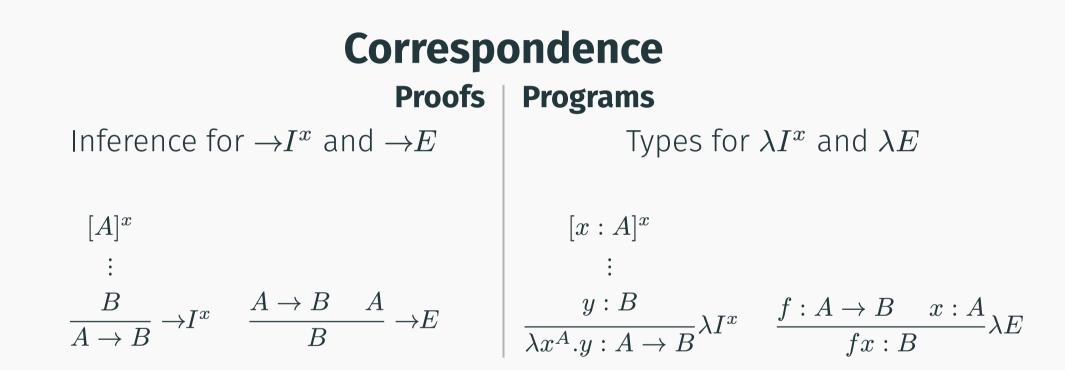
$$\frac{\frac{[x:A\times B]^{x}}{\pi_{2}x:B}\pi_{2}E}{\frac{\langle \pi_{2}x,\pi_{1}x\rangle:B\times A}{\langle \pi_{2}x,\pi_{1}x\rangle:B\times A}\pi_{1}E}$$

$$\frac{\frac{\langle \pi_{2}x,\pi_{1}x\rangle:B\times A}{\langle \pi_{2}x,\pi_{1}x\rangle:X}\pi_{1}E}{\lambda x^{A\times B}\cdot\langle \pi_{2}x,\pi_{1}x\rangle:X}$$



Correspondence

FormulaeTypesAtomic hypothesis A, B, ...Atomic types A, B, ...Logical connector \rightarrow Function type \rightarrow Logical connector \wedge Product Type \times



Correspondence

Proofs

Programs

Inference for $\wedge I$ and $\wedge_1 E$ and $\wedge_2 E$

$$\frac{A \quad B}{A \wedge B} \wedge I$$

$$\frac{A \wedge B}{A} \wedge_1 E \quad \frac{A \wedge B}{B} \wedge_2 E$$

Types for $\wedge I$ and $\wedge_1 E$ and $\wedge_2 E$

$$\begin{split} \frac{X:A \quad Y:B}{\langle X,Y\rangle:A\times B}\pi I\\ \frac{L:A\times B}{\pi_1L:A}\pi_1E \quad \frac{L:A\times B}{\pi_2L:B}\pi_2E \end{split}$$

Correspondence

Proofs

Normalising (simplifying) of Proof

There's a finite algorithm that says if two proofs are equivalent.

Programs Normalising (running) of Program

Simply Typed Lambda Calculus is Strongly Normalising and has the Church Rossier Property. So, there's a finite algorithm that can determine if two Terms are equivalent.

Correspondence

Proofs	Programs
Normalised proofs of a formula	Language
only uses "concepts" present in	of Introdu
the formula.	
E.g., Proof of $A \to (A \to B) \to B$	
does not need ∧.	

Language features comes in pairs of **Introduction** and **Elimination**

Curry Howard Correspondence { proof \leftrightarrow programs }

Proving that $A \to (A \to B) \to B$

Proving that $A \to (A \to B) \to B$

1. Convert formula $A \to (A \to B) \to B$ into the type $A \to (A \to B) \to B$

Proving that $A \to (A \to B) \to B$

- 1. Convert formula $A \to (A \to B) \to B$ into the type $A \to (A \to B) \to B$
- 2. Find a **term** (program) that has the **type**: $\lambda x^A f^{A \to B} . fx$

Proving that $A \to (A \to B) \to B$

- 1. Convert formula $A \to (A \to B) \to B$ into the type $A \to (A \to B) \to B$
- 2. Find a term (program) that has the type: $\lambda x^A f^{A \to B} . fx$
- 3. Convert the **justification tree** for the **type** of the **term** into a **proof**.

$$\frac{[f:A \to B]^{f} \quad [x:A]^{x}}{fx:B} \lambda E}{\frac{fx:B}{\lambda f^{A \to B}.fx:(A \to B) \to B} \lambda I^{f}}{\lambda f^{A \to B}.fx:A \to (A \to B) \to B} \lambda I^{x} \Longrightarrow \frac{[A \to B]^{f} \quad [A]^{x}}{B} \to E}{(A \to B) \to B} \to I^{f}}{A \to (A \to B) \to B} \to I^{x}$$

Simplifying a proof that $A \to B \to B \land A$

Simplifying a proof that $A \to B \to B \land A$

Roundabout proof:

- 1. Assume A and B, we have $A \wedge B \{ by rule \wedge I \}$.
- 2. Since we've previously shown that $A \wedge B \rightarrow B \wedge A$, the result holds.

Simplifying a proof that $A \rightarrow B \rightarrow B \land A$ **Roundabout proof**:

- 1. Assume A and B, we have $A \wedge B \{ by rule \wedge I \}$.
- 2. Since we've previously shown that $A \wedge B \rightarrow B \wedge A$, the result holds.

Proof corresponds to program: $\lambda x^A y^B . (\lambda x^{A \times B} . \langle \pi_2 x, \pi_1 x \rangle) \langle x, y \rangle$

proof that $A{\wedge}B{\rightarrow}B{\wedge}A$

Simplifying a proof that $A \rightarrow B \rightarrow B \land A$ **Roundabout proof**:

- 1. Assume A and B, we have $A \wedge B \{ by rule \wedge I \}$.
- 2. Since we've previously shown that $A \wedge B \rightarrow B \wedge A$, the result holds.

Proof corresponds to program:
$$\lambda x^A y^B . (\lambda x^{A \times B} . \langle \pi_2 x, \pi_1 x \rangle) \langle x, y \rangle$$

proof that $A \land B \rightarrow B \land A$

Normalised program: $\lambda x^A y^B . \langle y, x \rangle$

Simplifying a proof that $A \rightarrow B \rightarrow B \land A$ **Roundabout proof**:

- 1. Assume A and B, we have $A \wedge B \{ by rule \wedge I \}$.
- 2. Since we've previously shown that $A \wedge B \rightarrow B \wedge A$, the result holds.

Proof corresponds to program:
$$\lambda x^A y^B . \underbrace{(\lambda x^{A \times B} . \langle \pi_2 x, \pi_1 x \rangle)}_{(\lambda x, y)} \langle x, y \rangle$$

proof that $A{\wedge}B{\rightarrow}B{\wedge}A$

Normalised program: $\lambda x^A y^B . \langle y, x \rangle$ Normalised proof: Assume A and B, we have $B \wedge A \{ by rule \land I \}$. What now?

Proofs

Logical connector \rightarrow (implication)

Logical connector \land (and)

Logical connector \lor (or)

Quantifiers \forall (for all) and \exists (exists)

Second-order intuitionistic predicate logic

Intuitionist \rightarrow Classical Logic

Programs Function definition & application { Haskell Curry, 1934 }

Product Types { William Howard, 1969 }

Sum Types/Enums { William Howard, 1969 }

Dependent Types/Types depend on values
• E.g., Array type paired with its length int[5]
{ William Howard, 1969 }

Polymorphism/Generic Programming { **Girard & Reynolds, 1972/1974** }

Continuous Passing { Tim Griffin, 1990 }

Programming Language Design is often seen as ad-hoc.

Curry-Howard Correspondence gives us a solid theory of certain language features

Summary

- 1. Untyped Lambda Calculus { programming language }
- 2. Simply Typed Lambda Calculus { programming language }
- 3. Proof System (\land and \rightarrow) { proof system }
- 4. Curry Howard Correspondence { **proof** \leftrightarrow **programs** }
- 5. What now?