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Introduction

Curry Howard Correspondence
Mathematical Proofs ⟺ Programs

• First noticed by Haskell Curry in 1934, before computers, or programming
as we know today

• { personal opinion } One of the biggest bridge connecting Mathematics
and Computer Science

• Majority of the writing on this is targeted at Mathematicians, not Com5
puter People.
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Introduction

Curry Howard Correspondence
Mathematical Proofs ⟺ Programs

Uses of the Correspondence
Powers Interactive Theorem Provers
• For Mathematicians: Verifies a mathematical argument is sound
• For Computer People: Formal Verification of software/hardware
‣ Proving an implementation is correct for all inputs
‣ Used in safety critical software (like airbags to ensure compliance)
‣ Intel uses it to verify microcode
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5



Introduction

Interactive Theorem Provers
Questions:
• What is a Mathematical Proof?
• What does it mean for reasoning to be sound?

5



Introduction

Interactive Theorem Provers
Questions:
• What is a Mathematical Proof?
• What does it mean for reasoning to be sound?
• How to program a computer to verify a proof’s correctness?

5



Introduction

Interactive Theorem Provers
Questions:
• What is a Mathematical Proof?
• What does it mean for reasoning to be sound?
• How to program a computer to verify a proof’s correctness?

Example of a Proposition
How can we prove the following?

∀𝐴, 𝐵 boolean : (𝐴 ∧ 𝐵) → (𝐵 ∧ 𝐴)
(𝐴 and 𝐵) is equivalent to (𝐵 and 𝐴)
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Attempt 1: Bruteforce (the usual way we test software)
𝐴, 𝐵 can either be True or False. We can try all 4 possibilities and show
that the expression is always True.
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Introduction

To Prove
∀𝐴, 𝐵 boolean : (𝐴 ∧ 𝐵) ↔ (𝐵 ∧ 𝐴)

Attempt 1: Bruteforce (the usual way we test software)
𝐴, 𝐵 can either be True or False. We can try all 4 possibilities and show
that the expression is always True.

𝐴 𝐵 𝐴 ∧ 𝐵 𝐵 ∧ 𝐴
False False False False ✔
False True False False ✔
True False False False ✔
True True True True ✔
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Introduction

Problem: What if the domain is infinite?
∀𝑥, 𝑦 ∈ ℤ≥0 : 𝑥 + 𝑦 ≥ 𝑥

For any 𝑥, 𝑦 integers ≥ 0, 𝑥 + 𝑦 ≥ 𝑥
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Introduction

Problem: What if the domain is infinite?
∀𝑥, 𝑦 ∈ ℤ≥0 : 𝑥 + 𝑦 ≥ 𝑥

For any 𝑥, 𝑦 integers ≥ 0, 𝑥 + 𝑦 ≥ 𝑥

• We can no longer try every possible value
• We need to program the computer to reason.
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To Prove
∀𝑥, 𝑦 ∈ ℤ≥0 : 𝑥 + 𝑦 ≥ 𝑥

Attempt 2: Define the constructs to the computer and compose theorems
The computer needs to know
• What ℤ≥0 is.
‣ Understand all of its properties and statements you can say about it

• What ∀, +, ≥ means
• How to combine reasoning steps together in a sound way
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Introduction

To Prove
∀𝑥, 𝑦 ∈ ℤ≥0 : 𝑥 + 𝑦 ≥ 𝑥

Attempt 2: Define the constructs to the computer and compose theorems
The computer needs to know
• What ℤ≥0 is.
‣ Understand all of its properties and statements you can say about it

• What ∀, +, ≥ means
• How to combine reasoning steps together in a sound way
Very difficult problem! Gives rise to the idea of a Proof System.
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Introduction

Proof System
A framework which one can prove statements.
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Introduction

Proof System
A framework which one can prove statements.

Consists of:
1. Formal Language: A language to write formulas in.
2. Rules of Inference: How to reason to prove statements.
3. Axioms: Assumptions, statements assumed true.
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Example of a (non-trivial but easy) Mathematical Proof
Proposition: 

√
2 is irrational (cannot be a fraction)
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Introduction

Example of a (non-trivial but easy) Mathematical Proof
Proposition: 

√
2 is irrational (cannot be a fraction)

Proof:
1. Suppose 

√
2 = 𝑎

𝑏  in simplified form.
2. Then 2𝑏2 = 𝑎2.
3. Since 2𝑏2 is even, 𝑎2 is even, so 𝑎 is even.
4. Since 𝑎2 is even, 2𝑏2 is divisible by 4, so 𝑏2 is even, and 𝑏 has to be even.
5. Hence both 𝑎 and 𝑏 are even.
6. But 𝑎

𝑏  is supposed to be simplified form, a contradiction!
7. Hence our assumption that 

√
2 = 𝑎

𝑏  is not true!
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Introduction

Reflection Questions:
• Can you figure out what you need to define to a computer to understand

this proof?
• Can you figure how to encode ways one can compose reasoning?
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Introduction

Taster in what a Computer needs: { a rabbithole everywhere }
• What is a natural number?

Peano's 6 Axioms:
 1. ∀𝑥, 0 ≠ 𝑆(𝑥)
 2. ∀𝑥, 𝑦(𝑆(𝑥) = 𝑆(𝑦) ⇒ 𝑥 = 𝑦)
 3. ∀𝑥(𝑥 + 0 = 𝑥)
 …

• What is an integer?
ℤ ≅ ℕ2/ ∼, where (𝑎, 𝑏) ∼ (𝑐, 𝑑) iff 𝑎 + 𝑑 = 𝑏 + 𝑐

• What is a fraction?
ℚ ≅ ℤ2/ ∼, where (𝑎, 𝑏) ∼ (𝑐, 𝑑) iff 𝑎𝑑 = 𝑏𝑐
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Work not in Proof Systems but in Programs
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Formula
Proof

Formula has a Proof
Simplification of Proof

Programming Side
Type
Term { valid program }
Type has a Term
Running of Term
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Introduction

Work not in Proof Systems but in Programs
Proof System Side

Formula
Proof

Formula has a Proof
Simplification of Proof

Programming Side
Type
Term { valid program }
Type has a Term
Running of Term

If we want to verify the Proof of a Formula,
1. Convert Formula to a Type in the programming language.
2. Convert Proof to a Term in the programming language.
3. Computer verifies the Term has the correct Type in the language.

13



For every Proof System,
we can define a Programming Language where

finding a Proof
⟺

finding a Term with the correct Type



Table of contents

Demonstrate the correspondence between Proofs and Programs:
We’ll be constructing the most basic Programming Language and Proof
System, and demonstrate a clear linkage between the two.
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Demonstrate the correspondence between Proofs and Programs:
We’ll be constructing the most basic Programming Language and Proof
System, and demonstrate a clear linkage between the two.

1. Untyped Lambda Calculus { programming language }
2. Simply Typed Lambda Calculus { programming language }
3. Proof System (∧ and →) { proof system }
4. Curry Howard Correspondence { proof ↔ programs }
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Lambda Expressions { in Python }
f = lambda x: x def f(x): return x

Lambda Expressions { in Untyped Lambda Calculus }
𝜆𝑥𝑓.𝑓(𝑥) is a Term corresponding to lambda x: lambda f: f(x)
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Lambda Expressions { in Python }
f = lambda x: x def f(x): return x

Lambda Expressions { in Untyped Lambda Calculus }
𝜆𝑥𝑓.𝑓(𝑥) is a Term corresponding to lambda x: lambda f: f(x)

𝜆 𝑥𝑓⏟
arguments

. 𝑓(𝑥)⏟
operation

• Arguments are Curried: 𝜆𝑥𝑓. op ≅ 𝜆𝑥.(𝜆𝑓. op)
‣ Python: lambda x,f: <op> → lambda x: lambda f: <op>
‣ Every “function” has 1 argument and 1 return value

17



Untyped Lambda Calculus { programming language }

Two Concepts of Untyped Lambda Calculus
𝜆𝑥𝑓⏟

abstraction

. 𝑓(𝑥)⏟
application

1. Abstraction aka function definition { Introduction of abstraction }
2. Application aka function calling { Elimination of abstraction }
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Untyped Lambda Calculus { programming language }

Two Concepts of Untyped Lambda Calculus
𝜆𝑥𝑓⏟

abstraction

. 𝑓(𝑥)⏟
application

1. Abstraction aka function definition { Introduction of abstraction }
2. Application aka function calling { Elimination of abstraction }

Language Features should come in pairs of Introduction and Elimination.
• Introduction: Definition
• Elimination: Consequences of Definition
Gives a language some nice properties.
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Eliminating Brackets
• Brackets () are used to indicate Order of Operations
• Impose rules to avoid writing extra brackets for clarity
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• Impose rules to avoid writing extra brackets for clarity

Rules of Order of Operation
• Application is left-associative
‣ 𝑀𝑁𝑃  is (𝑀(𝑁))(𝑃 )

• Application has higher precedence than Abstraction { like × vs + }
‣ 𝜆𝑥.𝑀𝑁  is 𝜆𝑥.(𝑀𝑁) and not (𝜆𝑥.𝑀)𝑁
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Untyped Lambda Calculus { programming language }

Eliminating Brackets
• Brackets () are used to indicate Order of Operations
• Impose rules to avoid writing extra brackets for clarity

Rules of Order of Operation
• Application is left-associative
‣ 𝑀𝑁𝑃  is (𝑀(𝑁))(𝑃 )

• Application has higher precedence than Abstraction { like × vs + }
‣ 𝜆𝑥.𝑀𝑁  is 𝜆𝑥.(𝑀𝑁) and not (𝜆𝑥.𝑀)𝑁

𝜆𝑥.𝑥𝑧(𝜆𝑦.𝑥𝑦) ⟺ 𝜆𝑥.(𝑥(𝑧)(𝜆𝑦.𝑥(𝑦)))
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Executing an example program
1. (𝜆𝑥𝑦.𝑦)(𝜆𝑥.𝑥)(𝜆𝑥.𝑥)
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Untyped Lambda Calculus { programming language }

Executing an example program
1. (𝜆𝑥⏟

variable

𝑦.𝑦) (𝜆𝑥.𝑥)⏟
argument

(𝜆𝑥.𝑥)

• We replace variable 𝑥 in the body of (𝜆𝑥𝑦.𝑦) with the argument (𝜆𝑥.𝑥).
‣ Since the body of (𝜆𝑥𝑦.𝑦) is 𝜆𝑦.𝑦, which does not contain 𝑥
‣ We simply return the body 𝜆𝑦.𝑦.
‣ (𝜆𝑥𝑦.𝑦)(𝜆𝑥.𝑥) → (𝜆𝑦.𝑦)

• In Python: (lambda x: lambda y: y)(lambda x: x) -> (lambda y: y)
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Untyped Lambda Calculus { programming language }

Executing an example program
1. (𝜆𝑥𝑦.𝑦)(𝜆𝑥.𝑥)(𝜆𝑥.𝑥)
2. (𝜆𝑦⏟

variable

.𝑦) (𝜆𝑥.𝑥)⏟
argument

• We replace variable 𝑦 in the body of (𝜆𝑦.𝑦) with the argument (𝜆𝑥.𝑥).
‣ Since the body of (𝜆𝑦.𝑦) is 𝑦,
‣ We replace the body 𝑦 → 𝜆𝑥.𝑥 and return it.
‣ (𝜆𝑦.𝑦)(𝜆𝑥.𝑥) → (𝜆𝑥.𝑥)

• In Python: (lambda y: y)(lambda x: x) -> (lambda x: x)
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Untyped Lambda Calculus { programming language }

Executing an example program
1. (𝜆𝑥𝑦.𝑦)(𝜆𝑥.𝑥)(𝜆𝑥.𝑥)
2. (𝜆𝑦.𝑦)(𝜆𝑥.𝑥)
3. 𝜆𝑥.𝑥
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Untyped Lambda Calculus { programming language }

Executing an example program
1. (𝜆𝑥𝑦.𝑦)(𝜆𝑥.𝑥)(𝜆𝑥.𝑥)
2. (𝜆𝑦.𝑦)(𝜆𝑥.𝑥)
3. 𝜆𝑥.𝑥 { stop when we can’t perform Application }

When we can’t reduce a term anymore, we call the term normal.
• We write 𝑀 ↠ 𝑁  if we can reduce a term 𝑀  to a term 𝑁 .
• (𝜆𝑥𝑦.𝑦)(𝜆𝑥.𝑥)(𝜆𝑥.𝑥) ↠ 𝜆𝑥.𝑥
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Executing an example program
1. (𝜆𝑥.𝑥𝑥)(𝜆𝑥.𝑥𝑥)
2. (𝜆𝑥.𝑥𝑥)(𝜆𝑥.𝑥𝑥)
3. …
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Untyped Lambda Calculus { programming language }

Executing an example program
1. (𝜆𝑥.𝑥𝑥)(𝜆𝑥.𝑥𝑥)
2. (𝜆𝑥.𝑥𝑥)(𝜆𝑥.𝑥𝑥)
3. …

Program above does not converge. It has no normal form.
• Later, we’ll see that Types avoid such Terms that do not converge.
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Simply Typed Lambda Calculus { programming language }

Simply Typed Lambda Calculus
Lambda Calculus but every Term is Typed
• Term 𝑡 has a Type 𝑇 , written as 𝑡 : 𝑇 . { like Python’s Type Annotations }
• Later, we’ll map every Type into a Formula.
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Simply Typed Lambda Calculus { programming language }

Simply Typed Lambda Calculus
Lambda Calculus but every Term is Typed
• Term 𝑡 has a Type 𝑇 , written as 𝑡 : 𝑇 . { like Python’s Type Annotations }
• Later, we’ll map every Type into a Formula.

Types
• Atomic Types 𝐴, 𝐵, …. Basic building blocks for Types.
• Composite Types. Types built5upon other Types.
‣ { we’ll see them later } 𝐴 → 𝐵, 𝐴 × 𝐵
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Simply Typed Lambda Calculus { programming language }

Typing Rules
Rule 𝜆𝐼 : If 𝑦 : 𝐵, then 𝜆𝑥𝐴.𝑦 : 𝐴 → 𝐵
• 𝑥𝐴 states 𝑥 variable is of type 𝐴.
• 𝜆𝐼  is rule for Abstraction (𝐼  for Introduction)

Rule 𝜆𝐸: If 𝑓 : 𝐴 → 𝐵 and 𝑥 : 𝐴, then 𝑓𝑥 : 𝐵
• 𝜆𝐸 is rule for Application (𝐸 for Elimination)
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Simply Typed Lambda Calculus { programming language }

Typing Rules
Rule 𝜆𝐼 : If 𝑦 : 𝐵, then 𝜆𝑥𝐴.𝑦 : 𝐴 → 𝐵
• 𝑥𝐴 states 𝑥 variable is of type 𝐴.
• 𝜆𝐼  is rule for Abstraction (𝐼  for Introduction)
Notation

Premises
Conclusion

Name-of-rule   ⟹   

[𝑥 : 𝐴]𝑥 if we can assume that 𝑥 : 𝐴,

⋮
𝑦 : 𝐵 we’ll get 𝑦 : 𝐵,

𝜆𝑥𝐴.𝑦 : 𝐴 → 𝐵⏟⏟⏟⏟⏟⏟⏟
then 𝜆𝑥𝐴.𝑦:𝐴→𝐵

𝜆𝐼𝑥⏟
name of

rule
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Simply Typed Lambda Calculus { programming language }

Typing Rules
[𝑥 : 𝐴]𝑥

⋮
𝑦 : 𝐵

𝜆𝑥𝐴.𝑦 : 𝐴 → 𝐵
𝜆𝐼𝑥       𝑓 : 𝐴 → 𝐵   𝑥 : 𝐴

𝑓𝑥 : 𝐵
𝜆𝐸
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Simply Typed Lambda Calculus { programming language }

Examples
𝜆𝑥𝐴𝑓𝐴→𝐵.𝑓𝑥 :  𝐴 → ((𝐴 → 𝐵) → 𝐵)

We take → to be right-associative:
• 𝐴 → ((𝐴 → 𝐵) → 𝐵) is written as 𝐴 → (𝐴 → 𝐵) → 𝐵
• Functional programmers might recognise this notation for typing functions
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Simply Typed Lambda Calculus { programming language }

Examples
𝜆𝑥𝐴𝑓𝐴→𝐵.𝑓𝑥 :  𝐴 → ((𝐴 → 𝐵) → 𝐵)

We can form a Justification Tree for the Type by composing typing rules.
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Simply Typed Lambda Calculus { programming language }

Examples
𝜆𝑥𝐴𝑓𝐴→𝐵.𝑓𝑥 :  𝐴 → ((𝐴 → 𝐵) → 𝐵)

[𝑓 : 𝐴 → 𝐵]𝑓   [𝑥 : 𝐴]𝑥

• We first try to type the body 𝑓𝑥
• We know we can assume 𝑓 : 𝐴 → 𝐵 and 𝑥 : 𝐴.
• We’ll track these assumptions as 𝑓  and 𝑥.
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Examples
𝜆𝑥𝐴𝑓𝐴→𝐵.𝑓𝑥 :  𝐴 → ((𝐴 → 𝐵) → 𝐵)

[𝑓 : 𝐴 → 𝐵]𝑓   [𝑥 : 𝐴]𝑥

𝑓𝑥 : 𝐵 𝜆𝐸

• Next we can apply rule 𝜆𝐸 to type 𝑓𝑥 : 𝐵
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Examples
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𝜆𝑓𝐴→𝐵.𝑓𝑥 : (𝐴 → 𝐵) → 𝐵 𝜆𝐼𝑓

• Next we can apply rule 𝜆𝐼𝑓  to consume the assumption [𝑓 : 𝐴 → 𝐵]𝑓 .
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Examples
𝜆𝑥𝐴𝑓𝐴→𝐵.𝑓𝑥 :  𝐴 → ((𝐴 → 𝐵) → 𝐵)

[𝑓 : 𝐴 → 𝐵]𝑓   [𝑥 : 𝐴]𝑥

𝑓𝑥 : 𝐵 𝜆𝐸

𝜆𝑓𝐴→𝐵.𝑓𝑥 : (𝐴 → 𝐵) → 𝐵 𝜆𝐼𝑓

𝜆𝑥𝐴𝑓𝐴→𝐵.𝑓𝑥 : 𝐴 → (𝐴 → 𝐵) → 𝐵𝜆𝐼𝑥

• [𝑓 : 𝐴 → 𝐵]𝑓  must accompany a 𝜆𝐼𝑓  rule.
• [𝑥 : 𝐴]𝑥 must accompany a 𝜆𝐼𝑥 rule.
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It’ll be nice if our langauge can return more than 1 value.
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It’ll be nice if our langauge can return more than 1 value.

Adding Pairs in the Language
• ⟨𝑥, 𝑦⟩ introduces a Pair
• 𝜋1 and 𝜋2 eliminates a Pair:
‣ 𝜋1(⟨𝑥, 𝑦⟩) = 𝑥, 𝜋2(⟨𝑥, 𝑦⟩) = 𝑦

Typing Rules for Pairs: Product Types
𝑋 : 𝐴   𝑌 : 𝐵

⟨𝑋, 𝑌 ⟩ : 𝐴 × 𝐵⏟
product type

𝜋𝐼   𝐿 : 𝐴 × 𝐵
𝜋1𝐿 : 𝐴

𝜋1𝐸   𝐿 : 𝐴 × 𝐵
𝜋2𝐿 : 𝐵

𝜋2𝐸
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Simply Typed Lambda Calculus { programming language }

Example with Product Types
Function that reverses the order of a Pair:

𝜆𝑥𝐴×𝐵.⟨𝜋2𝑥, 𝜋1𝑥⟩ :  𝐴 × 𝐵 → 𝐵 × 𝐴
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Example with Product Types
Function that reverses the order of a Pair:

𝜆𝑥𝐴×𝐵.⟨𝜋2𝑥, 𝜋1𝑥⟩ :  𝐴 × 𝐵 → 𝐵 × 𝐴

[𝑥 : 𝐴 × 𝐵]𝑥

𝜋2𝑥 : 𝐵 𝜋2𝐸   
[𝑥 : 𝐴 × 𝐵]𝑥

𝜋1𝑥 : 𝐴 𝜋1𝐸

⟨𝜋2𝑥, 𝜋1𝑥⟩ : 𝐵 × 𝐴 𝜋𝐼

𝜆𝑥𝐴×𝐵.⟨𝜋2𝑥, 𝜋1𝑥⟩ :  𝐴 × 𝐵 → 𝐵 × 𝐴 𝜆𝐼𝑥
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Simply Typed Lambda Calculus { programming language }

Typing terms
Given an untyped term, we can assign Types to make the program valid in
the Simply Typed Lambda Calculus
• E.g., Function is applied with the correct types.
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Simply Typed Lambda Calculus { programming language }

Typing terms
Given an untyped term, we can assign Types to make the program valid in
the Simply Typed Lambda Calculus
• E.g., Function is applied with the correct types.
• (𝜆𝑥𝐴.𝑥) (𝜆𝑥𝐴.𝑥)⏟

Type 𝐴→𝐴

 is not correctly typed. (TypeError)

• (𝜆𝑥𝐴→𝐴.𝑥)(𝜆𝑥𝐴.𝑥) is correctly typed.

Our example program (𝜆𝑥𝑦.𝑦)(𝜆𝑥.𝑥)(𝜆𝑥.𝑥) can be typed as such:
(𝜆𝑥𝐴→𝐴𝑦𝐴→𝐴.𝑦)(𝜆𝑥𝐴.𝑥)(𝜆𝑥𝐴.𝑥)

29



Simply Typed Lambda Calculus { programming language }

Are all Untyped Lambda terms Typeable (in our language)?
No. (𝜆𝑥.𝑥𝑥)(𝜆𝑥.𝑥𝑥) is not typeable.
• Intuition: It runs forever, we need a recursive type to represent such

terms. This feature does not exist in our very simple language.

30



Simply Typed Lambda Calculus { programming language }

Are all Untyped Lambda terms Typeable (in our language)?
No. (𝜆𝑥.𝑥𝑥)(𝜆𝑥.𝑥𝑥) is not typeable.
• Intuition: It runs forever, we need a recursive type to represent such

terms. This feature does not exist in our very simple language.

Types restricts what are considered programs.
• Intended. Gives our language some nice properties.
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Simply Typed Lambda Calculus { programming language }

Simply Typed Lambda Calculus is Strongly Normalising
• Informal: All programs finish evaluating in finite steps.
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Simply Typed Lambda Calculus { programming language }

Simply Typed Lambda Calculus is Strongly Normalising
• Informal: All programs finish evaluating in finite steps.

Simply Typed Lambda Calculus has the Church-Rosser property
• Informal: No matter how we evaluate, we’ll get the same normal form.
• If 𝑁 ↠ 𝑀1 and 𝑁 ↠ 𝑀2, then there exists an 𝑋 with 𝑀1 ↠ 𝑋 and 𝑀2 ↠

𝑋.
𝑁

𝑀1 𝑀2

exists 𝑋

31



All programs in
Simply Typed Lambda Calculus

evaluate in finite steps to a
unique normal form



Simply Typed Lambda Calculus { programming language }

Determine if two programs are equivalent:
1. Evaluate both programs (finishes in finite steps)
2. Compare results (equal up to variable renaming)
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Simply Typed Lambda Calculus { programming language }

Determine if two programs are equivalent:
1. Evaluate both programs (finishes in finite steps)
2. Compare results (equal up to variable renaming)

Example:
(𝜆𝑥𝐴→𝐴𝑦𝐴→𝐴.𝑦)(𝜆𝑥𝐴.𝑥)(𝜆𝑥𝐴.𝑥) ↠ 𝜆𝑥𝐴.𝑥

(𝜆𝑥𝐴→𝐴.𝑥)(𝜆𝑧𝐴.𝑧) ↠ 𝜆𝑧𝐴.𝑧

Since 𝜆𝑥𝐴.𝑥 and 𝜆𝑧𝐴.𝑧 are equal up to variable renaming, both programs
are equivalent.
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Proof System (∧ and →) { proof system }

Language for Formulas
• Consists of atomic (hypothesis) represented as letters 𝐴, 𝐵, 𝐶, …
‣ atomics can either be True or False

• Logical connectors ∧⏟
and

 and →⏟
implies

, and () to indicate order of operations

E.g., 𝐴 → 𝐵 → (𝐵 ∧ 𝐴) is a Formula:
• If we assume 𝐴, and we assume 𝐵, then (𝐵 ∧ 𝐴).
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Proof System (∧ and →) { proof system }

Rules of Inference
For ∧ connective:

𝐴   𝐵
𝐴 ∧ 𝐵 ∧𝐼   

𝐴 ∧ 𝐵
𝐴

∧1𝐸   
𝐴 ∧ 𝐵

𝐵
∧2𝐸
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Proof System (∧ and →) { proof system }

Rules of Inference
For ∧ connective:

𝐴   𝐵
𝐴 ∧ 𝐵 ∧𝐼   

𝐴 ∧ 𝐵
𝐴

∧1𝐸   
𝐴 ∧ 𝐵

𝐵
∧2𝐸

For → connective:
if by assuming 𝐴

(track hypothesis with 𝑥)
[𝐴]𝑥

⋮
we can conclude 𝐵 𝐵

then, 𝐴 → 𝐵 via rule 𝐼𝑥 𝐴 → 𝐵 →𝐼𝑥   
𝐴 → 𝐵   𝐴

𝐵
→𝐸
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Proof System (∧ and →) { proof system }

Example: Prove that (𝐴 ∧ 𝐵) → (𝐵 ∧ 𝐴)
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Proof System (∧ and →) { proof system }

Example: Prove that (𝐴 ∧ 𝐵) → (𝐵 ∧ 𝐴)

[𝐴 ∧ 𝐵]𝑥

𝐵
∧2𝐸   

[𝐴 ∧ 𝐵]𝑥

𝐴
∧1𝐸

• Lets assume (𝐴 ∧ 𝐵) is true (we’ll track this hypothesis with 𝑥).
• From inference rules ∧2𝐸 and ∧1𝐸, we’ll obtain 𝐵 and 𝐴 is true.

37



Proof System (∧ and →) { proof system }

Example: Prove that (𝐴 ∧ 𝐵) → (𝐵 ∧ 𝐴)

[𝐴 ∧ 𝐵]𝑥

𝐵
∧2𝐸   

[𝐴 ∧ 𝐵]𝑥

𝐴
∧1𝐸

𝐵 ∧ 𝐴 ∧𝐼

• From ∧𝐼 , we can conclude 𝐵 ∧ 𝐴 is true
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Proof System (∧ and →) { proof system }

Example: Prove that (𝐴 ∧ 𝐵) → (𝐵 ∧ 𝐴)

[𝐴 ∧ 𝐵]𝑥

𝐵
∧2𝐸   

[𝐴 ∧ 𝐵]𝑥

𝐴
∧1𝐸

𝐵 ∧ 𝐴 ∧𝐼

(𝐴 ∧ 𝐵) → (𝐵 ∧ 𝐴) →𝐼𝑥

• Finally, with rule, →𝐼𝑥 we consume the hypothesis [𝐴 ∧ 𝐵]𝑥.
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Curry Howard Correspondence { proof ↔ programs }

Correspondence
Proof that (𝐴 ∧ 𝐵) → (𝐵 ∧ 𝐴)

[𝐴 ∧ 𝐵]𝑥

𝐵
∧2𝐸   

[𝐴 ∧ 𝐵]𝑥

𝐴
∧1𝐸

𝐵 ∧ 𝐴 ∧𝐼

(𝐴 ∧ 𝐵) → (𝐵 ∧ 𝐴) →𝐼𝑥

Type of 𝜆𝑥𝐴×𝐵.⟨𝜋2𝑥, 𝜋1𝑥⟩

[𝑥 : 𝐴 × 𝐵]𝑥

𝜋2𝑥 : 𝐵 𝜋2𝐸   
[𝑥 : 𝐴 × 𝐵]𝑥

𝜋1𝑥 : 𝐴 𝜋1𝐸

⟨𝜋2𝑥, 𝜋1𝑥⟩ : 𝐵 × 𝐴 𝜋𝐼

𝜆𝑥𝐴×𝐵.⟨𝜋2𝑥, 𝜋1𝑥⟩ :  𝐴 × 𝐵 → 𝐵 × 𝐴 𝜆𝐼𝑥
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Correspondence
Proof that (𝐴 ∧ 𝐵) → (𝐵 ∧ 𝐴)

[𝐴 ∧ 𝐵]𝑥

𝐵
∧2𝐸   

[𝐴 ∧ 𝐵]𝑥

𝐴
∧1𝐸

𝐵 ∧ 𝐴 ∧𝐼

(𝐴 ∧ 𝐵) → (𝐵 ∧ 𝐴) →𝐼𝑥

Type of 𝜆𝑥𝐴×𝐵.⟨𝜋2𝑥, 𝜋1𝑥⟩

[𝑥 : 𝐴 × 𝐵]𝑥

𝜋2𝑥 : 𝐵 𝜋2𝐸   
[𝑥 : 𝐴 × 𝐵]𝑥

𝜋1𝑥 : 𝐴 𝜋1𝐸

⟨𝜋2𝑥, 𝜋1𝑥⟩ : 𝐵 × 𝐴 𝜋𝐼

𝜆𝑥𝐴×𝐵.⟨𝜋2𝑥, 𝜋1𝑥⟩ :  𝐴 × 𝐵 → 𝐵 × 𝐴 𝜆𝐼𝑥
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Correspondence
Proof that (𝐴 ∧ 𝐵) → (𝐵 ∧ 𝐴)

[𝐴 ∧ 𝐵]𝑥

𝐵
∧2𝐸   

[𝐴 ∧ 𝐵]𝑥

𝐴
∧1𝐸

𝐵 ∧ 𝐴 ∧𝐼

(𝐴 ∧ 𝐵) → (𝐵 ∧ 𝐴) →𝐼𝑥

Type of 𝜆𝑥𝐴×𝐵.⟨𝜋2𝑥, 𝜋1𝑥⟩

[𝑥 : 𝐴 × 𝐵]𝑥

𝜋2𝑥 : 𝐵 𝜋2𝐸   
[𝑥 : 𝐴 × 𝐵]𝑥

𝜋1𝑥 : 𝐴 𝜋1𝐸

⟨𝜋2𝑥, 𝜋1𝑥⟩ : 𝐵 × 𝐴 𝜋𝐼

𝜆𝑥𝐴×𝐵.⟨𝜋2𝑥, 𝜋1𝑥⟩ :  𝐴 × 𝐵 → 𝐵 × 𝐴 𝜆𝐼𝑥
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Curry Howard Correspondence { proof ↔ programs }

Correspondence
Formulae

Atomic hypothesis 𝐴, 𝐵, …
Logical connector →
Logical connector ∧

Types
Atomic types 𝐴, 𝐵, …
Function type →
Product Type ×
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Curry Howard Correspondence { proof ↔ programs }

Correspondence
Proofs

Inference for →𝐼𝑥 and →𝐸

[𝐴]𝑥

⋮
𝐵

𝐴 → 𝐵 →𝐼𝑥   
𝐴 → 𝐵   𝐴

𝐵
→𝐸

Programs
Types for 𝜆𝐼𝑥 and 𝜆𝐸

[𝑥 : 𝐴]𝑥

⋮
𝑦 : 𝐵

𝜆𝑥𝐴.𝑦 : 𝐴 → 𝐵
𝜆𝐼𝑥   𝑓 : 𝐴 → 𝐵   𝑥 : 𝐴

𝑓𝑥 : 𝐵
𝜆𝐸

43



Curry Howard Correspondence { proof ↔ programs }

Correspondence
Proofs

Inference for ∧𝐼  and ∧1𝐸 and ∧2𝐸

𝐴   𝐵
𝐴 ∧ 𝐵 ∧𝐼

𝐴 ∧ 𝐵
𝐴

∧1𝐸   
𝐴 ∧ 𝐵

𝐵
∧2𝐸

Programs
Types for ∧𝐼  and ∧1𝐸 and ∧2𝐸

𝑋 : 𝐴   𝑌 : 𝐵
⟨𝑋, 𝑌 ⟩ : 𝐴 × 𝐵

𝜋𝐼

𝐿 : 𝐴 × 𝐵
𝜋1𝐿 : 𝐴

𝜋1𝐸   𝐿 : 𝐴 × 𝐵
𝜋2𝐿 : 𝐵

𝜋2𝐸
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Curry Howard Correspondence { proof ↔ programs }

Correspondence
Proofs

Normalising (simplifying) of Proof

There’s a finite algorithm that says
if two proofs are equivalent.

Programs
Normalising (running) of Program

Simply Typed Lambda Calculus is
Strongly Normalising and has the
Church Rossier Property.
So, there’s a finite algorithm that
can determine if two Terms are
equivalent.
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Curry Howard Correspondence { proof ↔ programs }

Correspondence
Proofs

Normalised proofs of a formula
only uses “concepts” present in

the formula.
E.g., Proof of 𝐴 → (𝐴 → 𝐵) → 𝐵

does not need ∧.

Programs
Language features comes in pairs
of Introduction and Elimination
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Curry Howard Correspondence { proof ↔ programs }

Proving that 𝐴 → (𝐴 → 𝐵) → 𝐵
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Curry Howard Correspondence { proof ↔ programs }

Proving that 𝐴 → (𝐴 → 𝐵) → 𝐵
1. Convert formula 𝐴 → (𝐴 → 𝐵) → 𝐵 into the type 𝐴 → (𝐴 → 𝐵) → 𝐵
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Proving that 𝐴 → (𝐴 → 𝐵) → 𝐵
1. Convert formula 𝐴 → (𝐴 → 𝐵) → 𝐵 into the type 𝐴 → (𝐴 → 𝐵) → 𝐵
2. Find a term (program) that has the type: 𝜆𝑥𝐴𝑓𝐴→𝐵.𝑓𝑥
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Curry Howard Correspondence { proof ↔ programs }

Proving that 𝐴 → (𝐴 → 𝐵) → 𝐵
1. Convert formula 𝐴 → (𝐴 → 𝐵) → 𝐵 into the type 𝐴 → (𝐴 → 𝐵) → 𝐵
2. Find a term (program) that has the type: 𝜆𝑥𝐴𝑓𝐴→𝐵.𝑓𝑥
3. Convert the justification tree for the type of the term into a proof.

[𝑓 : 𝐴 → 𝐵]𝑓   [𝑥 : 𝐴]𝑥

𝑓𝑥 : 𝐵 𝜆𝐸

𝜆𝑓𝐴→𝐵.𝑓𝑥 : (𝐴 → 𝐵) → 𝐵 𝜆𝐼𝑓

𝜆𝑥𝐴𝑓𝐴→𝐵.𝑓𝑥 : 𝐴 → (𝐴 → 𝐵) → 𝐵𝜆𝐼𝑥 ⟹

[𝐴 → 𝐵]𝑓   [𝐴]𝑥

𝐵
→𝐸

(𝐴 → 𝐵) → 𝐵 →𝐼𝑓

𝐴 → (𝐴 → 𝐵) → 𝐵 →𝐼𝑥
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Curry Howard Correspondence { proof ↔ programs }

Simplifying a proof that 𝐴 → 𝐵 → 𝐵 ∧ 𝐴
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Curry Howard Correspondence { proof ↔ programs }

Simplifying a proof that 𝐴 → 𝐵 → 𝐵 ∧ 𝐴
Roundabout proof:
1. Assume 𝐴 and 𝐵, we have 𝐴 ∧ 𝐵 { by rule ∧𝐼  }.
2. Since we’ve previously shown that 𝐴 ∧ 𝐵 → 𝐵 ∧ 𝐴, the result holds.
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Simplifying a proof that 𝐴 → 𝐵 → 𝐵 ∧ 𝐴
Roundabout proof:
1. Assume 𝐴 and 𝐵, we have 𝐴 ∧ 𝐵 { by rule ∧𝐼  }.
2. Since we’ve previously shown that 𝐴 ∧ 𝐵 → 𝐵 ∧ 𝐴, the result holds.

Proof corresponds to program: 𝜆𝑥𝐴𝑦𝐵.(𝜆𝑥𝐴×𝐵.⟨𝜋2𝑥, 𝜋1𝑥⟩)⏟⏟⏟⏟⏟⏟⏟⏟⏟
proof that 𝐴∧𝐵→𝐵∧𝐴

⟨𝑥, 𝑦⟩
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Simplifying a proof that 𝐴 → 𝐵 → 𝐵 ∧ 𝐴
Roundabout proof:
1. Assume 𝐴 and 𝐵, we have 𝐴 ∧ 𝐵 { by rule ∧𝐼  }.
2. Since we’ve previously shown that 𝐴 ∧ 𝐵 → 𝐵 ∧ 𝐴, the result holds.

Proof corresponds to program: 𝜆𝑥𝐴𝑦𝐵.(𝜆𝑥𝐴×𝐵.⟨𝜋2𝑥, 𝜋1𝑥⟩)⏟⏟⏟⏟⏟⏟⏟⏟⏟
proof that 𝐴∧𝐵→𝐵∧𝐴

⟨𝑥, 𝑦⟩

Normalised program: 𝜆𝑥𝐴𝑦𝐵.⟨𝑦, 𝑥⟩
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Simplifying a proof that 𝐴 → 𝐵 → 𝐵 ∧ 𝐴
Roundabout proof:
1. Assume 𝐴 and 𝐵, we have 𝐴 ∧ 𝐵 { by rule ∧𝐼  }.
2. Since we’ve previously shown that 𝐴 ∧ 𝐵 → 𝐵 ∧ 𝐴, the result holds.

Proof corresponds to program: 𝜆𝑥𝐴𝑦𝐵.(𝜆𝑥𝐴×𝐵.⟨𝜋2𝑥, 𝜋1𝑥⟩)⏟⏟⏟⏟⏟⏟⏟⏟⏟
proof that 𝐴∧𝐵→𝐵∧𝐴

⟨𝑥, 𝑦⟩

Normalised program: 𝜆𝑥𝐴𝑦𝐵.⟨𝑦, 𝑥⟩
Normalised proof: Assume 𝐴 and 𝐵, we have 𝐵 ∧ 𝐴 { by rule ∧𝐼  }.
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What now?

Proofs
Logical connector → (implication)

Logical connector ∧ (and)

Logical connector ∨ (or)

Quantifiers ∀ (for all) and ∃ (exists)

Second5order intuitionistic predicate logic

Intuitionist → Classical Logic

Programs
Function definition & application
{ Haskell Curry, 1934 }

Product Types { William Howard, 1969 }

Sum Types/Enums { William Howard, 1969 }

Dependent Types/Types depend on values
• E.g., Array type paired with its length int[5]
{ William Howard, 1969 }

Polymorphism/Generic Programming
{ Girard & Reynolds, 1972/1974 }

Continuous Passing { Tim Griffin, 1990 }
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Programming Language Design
is often seen as ad-hoc.

Curry-Howard Correspondence
gives us a solid theory

of certain language features



Thank you!

Summary
1. Untyped Lambda Calculus { programming language }
2. Simply Typed Lambda Calculus { programming language }
3. Proof System (∧ and →) { proof system }
4. Curry Howard Correspondence { proof ↔ programs }
5. What now?
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