
The Correspondence Between Proofs and Programs
And how Mathematics informs Programming Language Design

Jules Poon
2024 Dec

whoami

• Jules
• Undergrad
• Interested in Programming Languages and Math
‣ Currently interested in Algebra
‣ Worked briefly on CPython’s JIT

2

whoami

• Jules
• Undergrad
• Interested in Programming Languages and Math
‣ Currently interested in Algebra
‣ Worked briefly on CPython’s JIT

• Will do SWE for money { available for summer intern 2025 hmu }
‣ juliapoo.github.io { full of cool stuff }

2

https://juliapoo.github.io/

whoami

• Jules
• Undergrad
• Interested in Programming Languages and Math
‣ Currently interested in Algebra
‣ Worked briefly on CPython’s JIT

• Will do SWE for money { available for summer intern 2025 hmu }
‣ juliapoo.github.io { full of cool stuff }

Special thanks to @Patricia { linkedin.com/in/patmloi } for her invaluable
feedback, without which this would have been a completely different talk.

2

https://juliapoo.github.io/
https://sg.linkedin.com/in/patmloi

Introduction

Curry Howard Correspondence
Mathematical Proofs ⟺ Programs

• First noticed by Haskell Curry in 1934, before computers, or programming
as we know today

3

Introduction

Curry Howard Correspondence
Mathematical Proofs ⟺ Programs

• First noticed by Haskell Curry in 1934, before computers, or programming
as we know today

• { personal opinion } One of the biggest bridge connecting Mathematics
and Computer Science

3

Introduction

Curry Howard Correspondence
Mathematical Proofs ⟺ Programs

• First noticed by Haskell Curry in 1934, before computers, or programming
as we know today

• { personal opinion } One of the biggest bridge connecting Mathematics
and Computer Science

• Majority of the writing on this is targeted at Mathematicians, not Com5
puter People.

3

Introduction

Curry Howard Correspondence
Mathematical Proofs ⟺ Programs

4

Introduction

Curry Howard Correspondence
Mathematical Proofs ⟺ Programs

Uses of the Correspondence
Powers Interactive Theorem Provers
• For Mathematicians: Verifies a mathematical argument is sound
• For Computer People: Formal Verification of software/hardware

4

Introduction

Curry Howard Correspondence
Mathematical Proofs ⟺ Programs

Uses of the Correspondence
Powers Interactive Theorem Provers
• For Mathematicians: Verifies a mathematical argument is sound
• For Computer People: Formal Verification of software/hardware
‣ Proving an implementation is correct for all inputs
‣ Used in safety critical software (like airbags to ensure compliance)
‣ Intel uses it to verify microcode

4

Introduction

Interactive Theorem Provers
Questions:
• What is a Mathematical Proof?

5

Introduction

Interactive Theorem Provers
Questions:
• What is a Mathematical Proof?
• What does it mean for reasoning to be sound?

5

Introduction

Interactive Theorem Provers
Questions:
• What is a Mathematical Proof?
• What does it mean for reasoning to be sound?
• How to program a computer to verify a proof’s correctness?

5

Introduction

Interactive Theorem Provers
Questions:
• What is a Mathematical Proof?
• What does it mean for reasoning to be sound?
• How to program a computer to verify a proof’s correctness?

Example of a Proposition
How can we prove the following?

∀𝐴, 𝐵 boolean : (𝐴 ∧ 𝐵) → (𝐵 ∧ 𝐴)
(𝐴 and 𝐵) is equivalent to (𝐵 and 𝐴)

5

Introduction

To Prove
∀𝐴, 𝐵 boolean : (𝐴 ∧ 𝐵) ↔ (𝐵 ∧ 𝐴)

6

Introduction

To Prove
∀𝐴, 𝐵 boolean : (𝐴 ∧ 𝐵) ↔ (𝐵 ∧ 𝐴)

Attempt 1: Bruteforce (the usual way we test software)
𝐴, 𝐵 can either be True or False. We can try all 4 possibilities and show
that the expression is always True.

6

Introduction

To Prove
∀𝐴, 𝐵 boolean : (𝐴 ∧ 𝐵) ↔ (𝐵 ∧ 𝐴)

Attempt 1: Bruteforce (the usual way we test software)
𝐴, 𝐵 can either be True or False. We can try all 4 possibilities and show
that the expression is always True.

𝐴 𝐵 𝐴 ∧ 𝐵 𝐵 ∧ 𝐴
False False False False ✔
False True False False ✔
True False False False ✔
True True True True ✔

6

Introduction

Problem: What if the domain is infinite?
∀𝑥, 𝑦 ∈ ℤ≥0 : 𝑥 + 𝑦 ≥ 𝑥

For any 𝑥, 𝑦 integers ≥ 0, 𝑥 + 𝑦 ≥ 𝑥

7

Introduction

Problem: What if the domain is infinite?
∀𝑥, 𝑦 ∈ ℤ≥0 : 𝑥 + 𝑦 ≥ 𝑥

For any 𝑥, 𝑦 integers ≥ 0, 𝑥 + 𝑦 ≥ 𝑥

• We can no longer try every possible value

7

Introduction

Problem: What if the domain is infinite?
∀𝑥, 𝑦 ∈ ℤ≥0 : 𝑥 + 𝑦 ≥ 𝑥

For any 𝑥, 𝑦 integers ≥ 0, 𝑥 + 𝑦 ≥ 𝑥

• We can no longer try every possible value
• We need to program the computer to reason.

7

Introduction

To Prove
∀𝑥, 𝑦 ∈ ℤ≥0 : 𝑥 + 𝑦 ≥ 𝑥

8

Introduction

To Prove
∀𝑥, 𝑦 ∈ ℤ≥0 : 𝑥 + 𝑦 ≥ 𝑥

Attempt 2: Define the constructs to the computer and compose theorems
The computer needs to know
• What ℤ≥0 is.
‣ Understand all of its properties and statements you can say about it

• What ∀, +, ≥ means
• How to combine reasoning steps together in a sound way

8

Introduction

To Prove
∀𝑥, 𝑦 ∈ ℤ≥0 : 𝑥 + 𝑦 ≥ 𝑥

Attempt 2: Define the constructs to the computer and compose theorems
The computer needs to know
• What ℤ≥0 is.
‣ Understand all of its properties and statements you can say about it

• What ∀, +, ≥ means
• How to combine reasoning steps together in a sound way
Very difficult problem! Gives rise to the idea of a Proof System.

8

Introduction

Proof System
A framework which one can prove statements.

9

Introduction

Proof System
A framework which one can prove statements.

Consists of:
1. Formal Language: A language to write formulas in.
2. Rules of Inference: How to reason to prove statements.
3. Axioms: Assumptions, statements assumed true.

9

Introduction

Example of a (non-trivial but easy) Mathematical Proof
Proposition:

√
2 is irrational (cannot be a fraction)

10

Introduction

Example of a (non-trivial but easy) Mathematical Proof
Proposition:

√
2 is irrational (cannot be a fraction)

Proof:
1. Suppose

√
2 = 𝑎

𝑏 in simplified form.
2. Then 2𝑏2 = 𝑎2.
3. Since 2𝑏2 is even, 𝑎2 is even, so 𝑎 is even.
4. Since 𝑎2 is even, 2𝑏2 is divisible by 4, so 𝑏2 is even, and 𝑏 has to be even.
5. Hence both 𝑎 and 𝑏 are even.
6. But 𝑎

𝑏 is supposed to be simplified form, a contradiction!
7. Hence our assumption that

√
2 = 𝑎

𝑏 is not true!

10

Introduction

Reflection Questions:
• Can you figure out what you need to define to a computer to understand

this proof?
• Can you figure how to encode ways one can compose reasoning?

11

Introduction

Taster in what a Computer needs: { a rabbithole everywhere }
• What is a natural number?

Peano's 6 Axioms:
 1. ∀𝑥, 0 ≠ 𝑆(𝑥)
 2. ∀𝑥, 𝑦(𝑆(𝑥) = 𝑆(𝑦) ⇒ 𝑥 = 𝑦)
 3. ∀𝑥(𝑥 + 0 = 𝑥)
 …

• What is an integer?
ℤ ≅ ℕ2/ ∼, where (𝑎, 𝑏) ∼ (𝑐, 𝑑) iff 𝑎 + 𝑑 = 𝑏 + 𝑐

• What is a fraction?
ℚ ≅ ℤ2/ ∼, where (𝑎, 𝑏) ∼ (𝑐, 𝑑) iff 𝑎𝑑 = 𝑏𝑐

12

Introduction

Work not in Proof Systems but in Programs

13

Introduction

Work not in Proof Systems but in Programs
Proof System Side

Formula
Proof

Formula has a Proof
Simplification of Proof

Programming Side
Type
Term { valid program }
Type has a Term
Running of Term

13

Introduction

Work not in Proof Systems but in Programs
Proof System Side

Formula
Proof

Formula has a Proof
Simplification of Proof

Programming Side
Type
Term { valid program }
Type has a Term
Running of Term

If we want to verify the Proof of a Formula,
1. Convert Formula to a Type in the programming language.
2. Convert Proof to a Term in the programming language.
3. Computer verifies the Term has the correct Type in the language.

13

For every Proof System,
we can define a Programming Language where

finding a Proof
⟺

finding a Term with the correct Type

Table of contents

Demonstrate the correspondence between Proofs and Programs:
We’ll be constructing the most basic Programming Language and Proof
System, and demonstrate a clear linkage between the two.

15

Table of contents

Demonstrate the correspondence between Proofs and Programs:
We’ll be constructing the most basic Programming Language and Proof
System, and demonstrate a clear linkage between the two.

1. Untyped Lambda Calculus { programming language }
2. Simply Typed Lambda Calculus { programming language }
3. Proof System (∧ and →) { proof system }
4. Curry Howard Correspondence { proof ↔ programs }
5. What now?

15

Untyped Lambda Calculus { programming language }

Untyped Lambda Calculus { programming language }

Lambda Expressions { in Python }
f = lambda x: x def f(x): return x

Lambda Expressions { in Untyped Lambda Calculus }
𝜆𝑥𝑓.𝑓(𝑥) is a Term corresponding to lambda x: lambda f: f(x)

17

Untyped Lambda Calculus { programming language }

Lambda Expressions { in Python }
f = lambda x: x def f(x): return x

Lambda Expressions { in Untyped Lambda Calculus }
𝜆𝑥𝑓.𝑓(𝑥) is a Term corresponding to lambda x: lambda f: f(x)

𝜆 𝑥𝑓⏟
arguments

. 𝑓(𝑥)⏟
operation

17

Untyped Lambda Calculus { programming language }

Lambda Expressions { in Python }
f = lambda x: x def f(x): return x

Lambda Expressions { in Untyped Lambda Calculus }
𝜆𝑥𝑓.𝑓(𝑥) is a Term corresponding to lambda x: lambda f: f(x)

𝜆 𝑥𝑓⏟
arguments

. 𝑓(𝑥)⏟
operation

• Arguments are Curried: 𝜆𝑥𝑓. op ≅ 𝜆𝑥.(𝜆𝑓. op)
‣ Python: lambda x,f: <op> → lambda x: lambda f: <op>
‣ Every “function” has 1 argument and 1 return value

17

Untyped Lambda Calculus { programming language }

Two Concepts of Untyped Lambda Calculus
𝜆𝑥𝑓⏟

abstraction

. 𝑓(𝑥)⏟
application

1. Abstraction aka function definition { Introduction of abstraction }
2. Application aka function calling { Elimination of abstraction }

18

Untyped Lambda Calculus { programming language }

Two Concepts of Untyped Lambda Calculus
𝜆𝑥𝑓⏟

abstraction

. 𝑓(𝑥)⏟
application

1. Abstraction aka function definition { Introduction of abstraction }
2. Application aka function calling { Elimination of abstraction }

Language Features should come in pairs of Introduction and Elimination.
• Introduction: Definition
• Elimination: Consequences of Definition
Gives a language some nice properties.

18

Untyped Lambda Calculus { programming language }

Eliminating Brackets
• Brackets () are used to indicate Order of Operations
• Impose rules to avoid writing extra brackets for clarity

19

Untyped Lambda Calculus { programming language }

Eliminating Brackets
• Brackets () are used to indicate Order of Operations
• Impose rules to avoid writing extra brackets for clarity

Rules of Order of Operation
• Application is left-associative
‣ 𝑀𝑁𝑃 is (𝑀(𝑁))(𝑃)

19

Untyped Lambda Calculus { programming language }

Eliminating Brackets
• Brackets () are used to indicate Order of Operations
• Impose rules to avoid writing extra brackets for clarity

Rules of Order of Operation
• Application is left-associative
‣ 𝑀𝑁𝑃 is (𝑀(𝑁))(𝑃)

• Application has higher precedence than Abstraction { like × vs + }
‣ 𝜆𝑥.𝑀𝑁 is 𝜆𝑥.(𝑀𝑁) and not (𝜆𝑥.𝑀)𝑁

19

Untyped Lambda Calculus { programming language }

Eliminating Brackets
• Brackets () are used to indicate Order of Operations
• Impose rules to avoid writing extra brackets for clarity

Rules of Order of Operation
• Application is left-associative
‣ 𝑀𝑁𝑃 is (𝑀(𝑁))(𝑃)

• Application has higher precedence than Abstraction { like × vs + }
‣ 𝜆𝑥.𝑀𝑁 is 𝜆𝑥.(𝑀𝑁) and not (𝜆𝑥.𝑀)𝑁

𝜆𝑥.𝑥𝑧(𝜆𝑦.𝑥𝑦) ⟺ 𝜆𝑥.(𝑥(𝑧)(𝜆𝑦.𝑥(𝑦)))

19

Untyped Lambda Calculus { programming language }

Executing an example program
1. (𝜆𝑥𝑦.𝑦)(𝜆𝑥.𝑥)(𝜆𝑥.𝑥)

20

Untyped Lambda Calculus { programming language }

Executing an example program
1. (𝜆𝑥⏟

variable

𝑦.𝑦) (𝜆𝑥.𝑥)⏟
argument

(𝜆𝑥.𝑥)

• We replace variable 𝑥 in the body of (𝜆𝑥𝑦.𝑦) with the argument (𝜆𝑥.𝑥).
‣ Since the body of (𝜆𝑥𝑦.𝑦) is 𝜆𝑦.𝑦, which does not contain 𝑥
‣ We simply return the body 𝜆𝑦.𝑦.
‣ (𝜆𝑥𝑦.𝑦)(𝜆𝑥.𝑥) → (𝜆𝑦.𝑦)

• In Python: (lambda x: lambda y: y)(lambda x: x) -> (lambda y: y)

20

Untyped Lambda Calculus { programming language }

Executing an example program
1. (𝜆𝑥𝑦.𝑦)(𝜆𝑥.𝑥)(𝜆𝑥.𝑥)
2. (𝜆𝑦.𝑦)(𝜆𝑥.𝑥)

20

Untyped Lambda Calculus { programming language }

Executing an example program
1. (𝜆𝑥𝑦.𝑦)(𝜆𝑥.𝑥)(𝜆𝑥.𝑥)
2. (𝜆𝑦⏟

variable

.𝑦) (𝜆𝑥.𝑥)⏟
argument

• We replace variable 𝑦 in the body of (𝜆𝑦.𝑦) with the argument (𝜆𝑥.𝑥).
‣ Since the body of (𝜆𝑦.𝑦) is 𝑦,
‣ We replace the body 𝑦 → 𝜆𝑥.𝑥 and return it.
‣ (𝜆𝑦.𝑦)(𝜆𝑥.𝑥) → (𝜆𝑥.𝑥)

• In Python: (lambda y: y)(lambda x: x) -> (lambda x: x)

20

Untyped Lambda Calculus { programming language }

Executing an example program
1. (𝜆𝑥𝑦.𝑦)(𝜆𝑥.𝑥)(𝜆𝑥.𝑥)
2. (𝜆𝑦.𝑦)(𝜆𝑥.𝑥)
3. 𝜆𝑥.𝑥

20

Untyped Lambda Calculus { programming language }

Executing an example program
1. (𝜆𝑥𝑦.𝑦)(𝜆𝑥.𝑥)(𝜆𝑥.𝑥)
2. (𝜆𝑦.𝑦)(𝜆𝑥.𝑥)
3. 𝜆𝑥.𝑥 { stop when we can’t perform Application }

When we can’t reduce a term anymore, we call the term normal.
• We write 𝑀 ↠ 𝑁 if we can reduce a term 𝑀 to a term 𝑁 .
• (𝜆𝑥𝑦.𝑦)(𝜆𝑥.𝑥)(𝜆𝑥.𝑥) ↠ 𝜆𝑥.𝑥

20

Untyped Lambda Calculus { programming language }

Executing an example program
1. (𝜆𝑥.𝑥𝑥)(𝜆𝑥.𝑥𝑥)

21

Untyped Lambda Calculus { programming language }

Executing an example program
1. (𝜆𝑥.𝑥𝑥)(𝜆𝑥.𝑥𝑥)
2. (𝜆𝑥.𝑥𝑥)(𝜆𝑥.𝑥𝑥)
3. …

21

Untyped Lambda Calculus { programming language }

Executing an example program
1. (𝜆𝑥.𝑥𝑥)(𝜆𝑥.𝑥𝑥)
2. (𝜆𝑥.𝑥𝑥)(𝜆𝑥.𝑥𝑥)
3. …

Program above does not converge. It has no normal form.
• Later, we’ll see that Types avoid such Terms that do not converge.

21

Simply Typed Lambda Calculus { programming language }

Simply Typed Lambda Calculus { programming language }

Simply Typed Lambda Calculus
Lambda Calculus but every Term is Typed
• Term 𝑡 has a Type 𝑇 , written as 𝑡 : 𝑇 . { like Python’s Type Annotations }
• Later, we’ll map every Type into a Formula.

23

Simply Typed Lambda Calculus { programming language }

Simply Typed Lambda Calculus
Lambda Calculus but every Term is Typed
• Term 𝑡 has a Type 𝑇 , written as 𝑡 : 𝑇 . { like Python’s Type Annotations }
• Later, we’ll map every Type into a Formula.

Types
• Atomic Types 𝐴, 𝐵, …. Basic building blocks for Types.
• Composite Types. Types built5upon other Types.
‣ { we’ll see them later } 𝐴 → 𝐵, 𝐴 × 𝐵

23

Simply Typed Lambda Calculus { programming language }

Typing Rules
Rule 𝜆𝐼 : If 𝑦 : 𝐵, then 𝜆𝑥𝐴.𝑦 : 𝐴 → 𝐵
• 𝑥𝐴 states 𝑥 variable is of type 𝐴.
• 𝜆𝐼 is rule for Abstraction (𝐼 for Introduction)

Rule 𝜆𝐸: If 𝑓 : 𝐴 → 𝐵 and 𝑥 : 𝐴, then 𝑓𝑥 : 𝐵
• 𝜆𝐸 is rule for Application (𝐸 for Elimination)

24

Simply Typed Lambda Calculus { programming language }

Typing Rules
Rule 𝜆𝐼 : If 𝑦 : 𝐵, then 𝜆𝑥𝐴.𝑦 : 𝐴 → 𝐵
• 𝑥𝐴 states 𝑥 variable is of type 𝐴.
• 𝜆𝐼 is rule for Abstraction (𝐼 for Introduction)
Notation

Premises
Conclusion

Name-of-rule ⟹

[𝑥 : 𝐴]𝑥 if we can assume that 𝑥 : 𝐴,

⋮
𝑦 : 𝐵 we’ll get 𝑦 : 𝐵,

𝜆𝑥𝐴.𝑦 : 𝐴 → 𝐵⏟⏟⏟⏟⏟⏟⏟
then 𝜆𝑥𝐴.𝑦:𝐴→𝐵

𝜆𝐼𝑥⏟
name of

rule

24

Simply Typed Lambda Calculus { programming language }

Typing Rules
[𝑥 : 𝐴]𝑥

⋮
𝑦 : 𝐵

𝜆𝑥𝐴.𝑦 : 𝐴 → 𝐵
𝜆𝐼𝑥 𝑓 : 𝐴 → 𝐵 𝑥 : 𝐴

𝑓𝑥 : 𝐵
𝜆𝐸

25

Simply Typed Lambda Calculus { programming language }

Examples
𝜆𝑥𝐴𝑓𝐴→𝐵.𝑓𝑥 : 𝐴 → ((𝐴 → 𝐵) → 𝐵)

We take → to be right-associative:
• 𝐴 → ((𝐴 → 𝐵) → 𝐵) is written as 𝐴 → (𝐴 → 𝐵) → 𝐵
• Functional programmers might recognise this notation for typing functions

26

Simply Typed Lambda Calculus { programming language }

Examples
𝜆𝑥𝐴𝑓𝐴→𝐵.𝑓𝑥 : 𝐴 → ((𝐴 → 𝐵) → 𝐵)

We can form a Justification Tree for the Type by composing typing rules.

26

Simply Typed Lambda Calculus { programming language }

Examples
𝜆𝑥𝐴𝑓𝐴→𝐵.𝑓𝑥 : 𝐴 → ((𝐴 → 𝐵) → 𝐵)

[𝑓 : 𝐴 → 𝐵]𝑓 [𝑥 : 𝐴]𝑥

• We first try to type the body 𝑓𝑥
• We know we can assume 𝑓 : 𝐴 → 𝐵 and 𝑥 : 𝐴.
• We’ll track these assumptions as 𝑓 and 𝑥.

26

Simply Typed Lambda Calculus { programming language }

Examples
𝜆𝑥𝐴𝑓𝐴→𝐵.𝑓𝑥 : 𝐴 → ((𝐴 → 𝐵) → 𝐵)

[𝑓 : 𝐴 → 𝐵]𝑓 [𝑥 : 𝐴]𝑥

𝑓𝑥 : 𝐵 𝜆𝐸

• Next we can apply rule 𝜆𝐸 to type 𝑓𝑥 : 𝐵

26

Simply Typed Lambda Calculus { programming language }

Examples
𝜆𝑥𝐴𝑓𝐴→𝐵.𝑓𝑥 : 𝐴 → ((𝐴 → 𝐵) → 𝐵)

[𝑓 : 𝐴 → 𝐵]𝑓 [𝑥 : 𝐴]𝑥

𝑓𝑥 : 𝐵 𝜆𝐸

𝜆𝑓𝐴→𝐵.𝑓𝑥 : (𝐴 → 𝐵) → 𝐵 𝜆𝐼𝑓

• Next we can apply rule 𝜆𝐼𝑓 to consume the assumption [𝑓 : 𝐴 → 𝐵]𝑓 .

26

Simply Typed Lambda Calculus { programming language }

Examples
𝜆𝑥𝐴𝑓𝐴→𝐵.𝑓𝑥 : 𝐴 → ((𝐴 → 𝐵) → 𝐵)

[𝑓 : 𝐴 → 𝐵]𝑓 [𝑥 : 𝐴]𝑥

𝑓𝑥 : 𝐵 𝜆𝐸

𝜆𝑓𝐴→𝐵.𝑓𝑥 : (𝐴 → 𝐵) → 𝐵 𝜆𝐼𝑓

𝜆𝑥𝐴𝑓𝐴→𝐵.𝑓𝑥 : 𝐴 → (𝐴 → 𝐵) → 𝐵𝜆𝐼𝑥

• Next we can apply rule 𝜆𝐼𝑥 to consume the assumption [𝑥 : 𝐴]𝑥.

26

Simply Typed Lambda Calculus { programming language }

Examples
𝜆𝑥𝐴𝑓𝐴→𝐵.𝑓𝑥 : 𝐴 → ((𝐴 → 𝐵) → 𝐵)

[𝑓 : 𝐴 → 𝐵]𝑓 [𝑥 : 𝐴]𝑥

𝑓𝑥 : 𝐵 𝜆𝐸

𝜆𝑓𝐴→𝐵.𝑓𝑥 : (𝐴 → 𝐵) → 𝐵 𝜆𝐼𝑓

𝜆𝑥𝐴𝑓𝐴→𝐵.𝑓𝑥 : 𝐴 → (𝐴 → 𝐵) → 𝐵𝜆𝐼𝑥

• [𝑓 : 𝐴 → 𝐵]𝑓 must accompany a 𝜆𝐼𝑓 rule.
• [𝑥 : 𝐴]𝑥 must accompany a 𝜆𝐼𝑥 rule.

26

Simply Typed Lambda Calculus { programming language }

It’ll be nice if our langauge can return more than 1 value.

27

Simply Typed Lambda Calculus { programming language }

It’ll be nice if our langauge can return more than 1 value.

Adding Pairs in the Language
• ⟨𝑥, 𝑦⟩ introduces a Pair
• 𝜋1 and 𝜋2 eliminates a Pair:
‣ 𝜋1(⟨𝑥, 𝑦⟩) = 𝑥, 𝜋2(⟨𝑥, 𝑦⟩) = 𝑦

27

Simply Typed Lambda Calculus { programming language }

It’ll be nice if our langauge can return more than 1 value.

Adding Pairs in the Language
• ⟨𝑥, 𝑦⟩ introduces a Pair
• 𝜋1 and 𝜋2 eliminates a Pair:
‣ 𝜋1(⟨𝑥, 𝑦⟩) = 𝑥, 𝜋2(⟨𝑥, 𝑦⟩) = 𝑦

Typing Rules for Pairs: Product Types
𝑋 : 𝐴 𝑌 : 𝐵

⟨𝑋, 𝑌 ⟩ : 𝐴 × 𝐵⏟
product type

𝜋𝐼 𝐿 : 𝐴 × 𝐵
𝜋1𝐿 : 𝐴

𝜋1𝐸 𝐿 : 𝐴 × 𝐵
𝜋2𝐿 : 𝐵

𝜋2𝐸

27

Simply Typed Lambda Calculus { programming language }

Example with Product Types
Function that reverses the order of a Pair:

𝜆𝑥𝐴×𝐵.⟨𝜋2𝑥, 𝜋1𝑥⟩ : 𝐴 × 𝐵 → 𝐵 × 𝐴

28

Simply Typed Lambda Calculus { programming language }

Example with Product Types
Function that reverses the order of a Pair:

𝜆𝑥𝐴×𝐵.⟨𝜋2𝑥, 𝜋1𝑥⟩ : 𝐴 × 𝐵 → 𝐵 × 𝐴

[𝑥 : 𝐴 × 𝐵]𝑥

𝜋2𝑥 : 𝐵 𝜋2𝐸
[𝑥 : 𝐴 × 𝐵]𝑥

𝜋1𝑥 : 𝐴 𝜋1𝐸

⟨𝜋2𝑥, 𝜋1𝑥⟩ : 𝐵 × 𝐴 𝜋𝐼

𝜆𝑥𝐴×𝐵.⟨𝜋2𝑥, 𝜋1𝑥⟩ : 𝐴 × 𝐵 → 𝐵 × 𝐴 𝜆𝐼𝑥

28

Simply Typed Lambda Calculus { programming language }

Typing terms
Given an untyped term, we can assign Types to make the program valid in
the Simply Typed Lambda Calculus
• E.g., Function is applied with the correct types.

29

Simply Typed Lambda Calculus { programming language }

Typing terms
Given an untyped term, we can assign Types to make the program valid in
the Simply Typed Lambda Calculus
• E.g., Function is applied with the correct types.
• (𝜆𝑥𝐴.𝑥) (𝜆𝑥𝐴.𝑥)⏟

Type 𝐴→𝐴

 is not correctly typed. (TypeError)

29

Simply Typed Lambda Calculus { programming language }

Typing terms
Given an untyped term, we can assign Types to make the program valid in
the Simply Typed Lambda Calculus
• E.g., Function is applied with the correct types.
• (𝜆𝑥𝐴.𝑥) (𝜆𝑥𝐴.𝑥)⏟

Type 𝐴→𝐴

 is not correctly typed. (TypeError)

• (𝜆𝑥𝐴→𝐴.𝑥)(𝜆𝑥𝐴.𝑥) is correctly typed.

29

Simply Typed Lambda Calculus { programming language }

Typing terms
Given an untyped term, we can assign Types to make the program valid in
the Simply Typed Lambda Calculus
• E.g., Function is applied with the correct types.
• (𝜆𝑥𝐴.𝑥) (𝜆𝑥𝐴.𝑥)⏟

Type 𝐴→𝐴

 is not correctly typed. (TypeError)

• (𝜆𝑥𝐴→𝐴.𝑥)(𝜆𝑥𝐴.𝑥) is correctly typed.

Our example program (𝜆𝑥𝑦.𝑦)(𝜆𝑥.𝑥)(𝜆𝑥.𝑥) can be typed as such:
(𝜆𝑥𝐴→𝐴𝑦𝐴→𝐴.𝑦)(𝜆𝑥𝐴.𝑥)(𝜆𝑥𝐴.𝑥)

29

Simply Typed Lambda Calculus { programming language }

Are all Untyped Lambda terms Typeable (in our language)?
No. (𝜆𝑥.𝑥𝑥)(𝜆𝑥.𝑥𝑥) is not typeable.
• Intuition: It runs forever, we need a recursive type to represent such

terms. This feature does not exist in our very simple language.

30

Simply Typed Lambda Calculus { programming language }

Are all Untyped Lambda terms Typeable (in our language)?
No. (𝜆𝑥.𝑥𝑥)(𝜆𝑥.𝑥𝑥) is not typeable.
• Intuition: It runs forever, we need a recursive type to represent such

terms. This feature does not exist in our very simple language.

Types restricts what are considered programs.
• Intended. Gives our language some nice properties.

30

Simply Typed Lambda Calculus { programming language }

Simply Typed Lambda Calculus is Strongly Normalising
• Informal: All programs finish evaluating in finite steps.

31

Simply Typed Lambda Calculus { programming language }

Simply Typed Lambda Calculus is Strongly Normalising
• Informal: All programs finish evaluating in finite steps.

Simply Typed Lambda Calculus has the Church-Rosser property
• Informal: No matter how we evaluate, we’ll get the same normal form.
• If 𝑁 ↠ 𝑀1 and 𝑁 ↠ 𝑀2, then there exists an 𝑋 with 𝑀1 ↠ 𝑋 and 𝑀2 ↠

𝑋.
𝑁

𝑀1 𝑀2

exists 𝑋

31

All programs in
Simply Typed Lambda Calculus

evaluate in finite steps to a
unique normal form

Simply Typed Lambda Calculus { programming language }

Determine if two programs are equivalent:
1. Evaluate both programs (finishes in finite steps)
2. Compare results (equal up to variable renaming)

33

Simply Typed Lambda Calculus { programming language }

Determine if two programs are equivalent:
1. Evaluate both programs (finishes in finite steps)
2. Compare results (equal up to variable renaming)

Example:
(𝜆𝑥𝐴→𝐴𝑦𝐴→𝐴.𝑦)(𝜆𝑥𝐴.𝑥)(𝜆𝑥𝐴.𝑥) ↠ 𝜆𝑥𝐴.𝑥

(𝜆𝑥𝐴→𝐴.𝑥)(𝜆𝑧𝐴.𝑧) ↠ 𝜆𝑧𝐴.𝑧

Since 𝜆𝑥𝐴.𝑥 and 𝜆𝑧𝐴.𝑧 are equal up to variable renaming, both programs
are equivalent.

33

Proof System (∧ and →) { proof system }

Proof System (∧ and →) { proof system }

Language for Formulas
• Consists of atomic (hypothesis) represented as letters 𝐴, 𝐵, 𝐶, …
‣ atomics can either be True or False

• Logical connectors ∧⏟
and

 and →⏟
implies

, and () to indicate order of operations

E.g., 𝐴 → 𝐵 → (𝐵 ∧ 𝐴) is a Formula:
• If we assume 𝐴, and we assume 𝐵, then (𝐵 ∧ 𝐴).

35

Proof System (∧ and →) { proof system }

Rules of Inference
For ∧ connective:

𝐴 𝐵
𝐴 ∧ 𝐵 ∧𝐼

𝐴 ∧ 𝐵
𝐴

∧1𝐸
𝐴 ∧ 𝐵

𝐵
∧2𝐸

36

Proof System (∧ and →) { proof system }

Rules of Inference
For ∧ connective:

𝐴 𝐵
𝐴 ∧ 𝐵 ∧𝐼

𝐴 ∧ 𝐵
𝐴

∧1𝐸
𝐴 ∧ 𝐵

𝐵
∧2𝐸

For → connective:
if by assuming 𝐴

(track hypothesis with 𝑥)
[𝐴]𝑥

⋮
we can conclude 𝐵 𝐵

then, 𝐴 → 𝐵 via rule 𝐼𝑥 𝐴 → 𝐵 →𝐼𝑥
𝐴 → 𝐵 𝐴

𝐵
→𝐸

36

Proof System (∧ and →) { proof system }

Example: Prove that (𝐴 ∧ 𝐵) → (𝐵 ∧ 𝐴)

37

Proof System (∧ and →) { proof system }

Example: Prove that (𝐴 ∧ 𝐵) → (𝐵 ∧ 𝐴)

[𝐴 ∧ 𝐵]𝑥

𝐵
∧2𝐸

[𝐴 ∧ 𝐵]𝑥

𝐴
∧1𝐸

• Lets assume (𝐴 ∧ 𝐵) is true (we’ll track this hypothesis with 𝑥).
• From inference rules ∧2𝐸 and ∧1𝐸, we’ll obtain 𝐵 and 𝐴 is true.

37

Proof System (∧ and →) { proof system }

Example: Prove that (𝐴 ∧ 𝐵) → (𝐵 ∧ 𝐴)

[𝐴 ∧ 𝐵]𝑥

𝐵
∧2𝐸

[𝐴 ∧ 𝐵]𝑥

𝐴
∧1𝐸

𝐵 ∧ 𝐴 ∧𝐼

• From ∧𝐼 , we can conclude 𝐵 ∧ 𝐴 is true

37

Proof System (∧ and →) { proof system }

Example: Prove that (𝐴 ∧ 𝐵) → (𝐵 ∧ 𝐴)

[𝐴 ∧ 𝐵]𝑥

𝐵
∧2𝐸

[𝐴 ∧ 𝐵]𝑥

𝐴
∧1𝐸

𝐵 ∧ 𝐴 ∧𝐼

(𝐴 ∧ 𝐵) → (𝐵 ∧ 𝐴) →𝐼𝑥

• Finally, with rule, →𝐼𝑥 we consume the hypothesis [𝐴 ∧ 𝐵]𝑥.

37

Curry Howard Correspondence { proof ↔ programs }

Curry Howard Correspondence { proof ↔ programs }

Correspondence
Proof that (𝐴 ∧ 𝐵) → (𝐵 ∧ 𝐴)

[𝐴 ∧ 𝐵]𝑥

𝐵
∧2𝐸

[𝐴 ∧ 𝐵]𝑥

𝐴
∧1𝐸

𝐵 ∧ 𝐴 ∧𝐼

(𝐴 ∧ 𝐵) → (𝐵 ∧ 𝐴) →𝐼𝑥

Type of 𝜆𝑥𝐴×𝐵.⟨𝜋2𝑥, 𝜋1𝑥⟩

[𝑥 : 𝐴 × 𝐵]𝑥

𝜋2𝑥 : 𝐵 𝜋2𝐸
[𝑥 : 𝐴 × 𝐵]𝑥

𝜋1𝑥 : 𝐴 𝜋1𝐸

⟨𝜋2𝑥, 𝜋1𝑥⟩ : 𝐵 × 𝐴 𝜋𝐼

𝜆𝑥𝐴×𝐵.⟨𝜋2𝑥, 𝜋1𝑥⟩ : 𝐴 × 𝐵 → 𝐵 × 𝐴 𝜆𝐼𝑥

39

Curry Howard Correspondence { proof ↔ programs }

Correspondence
Proof that (𝐴 ∧ 𝐵) → (𝐵 ∧ 𝐴)

[𝐴 ∧ 𝐵]𝑥

𝐵
∧2𝐸

[𝐴 ∧ 𝐵]𝑥

𝐴
∧1𝐸

𝐵 ∧ 𝐴 ∧𝐼

(𝐴 ∧ 𝐵) → (𝐵 ∧ 𝐴) →𝐼𝑥

Type of 𝜆𝑥𝐴×𝐵.⟨𝜋2𝑥, 𝜋1𝑥⟩

[𝑥 : 𝐴 × 𝐵]𝑥

𝜋2𝑥 : 𝐵 𝜋2𝐸
[𝑥 : 𝐴 × 𝐵]𝑥

𝜋1𝑥 : 𝐴 𝜋1𝐸

⟨𝜋2𝑥, 𝜋1𝑥⟩ : 𝐵 × 𝐴 𝜋𝐼

𝜆𝑥𝐴×𝐵.⟨𝜋2𝑥, 𝜋1𝑥⟩ : 𝐴 × 𝐵 → 𝐵 × 𝐴 𝜆𝐼𝑥

40

Curry Howard Correspondence { proof ↔ programs }

Correspondence
Proof that (𝐴 ∧ 𝐵) → (𝐵 ∧ 𝐴)

[𝐴 ∧ 𝐵]𝑥

𝐵
∧2𝐸

[𝐴 ∧ 𝐵]𝑥

𝐴
∧1𝐸

𝐵 ∧ 𝐴 ∧𝐼

(𝐴 ∧ 𝐵) → (𝐵 ∧ 𝐴) →𝐼𝑥

Type of 𝜆𝑥𝐴×𝐵.⟨𝜋2𝑥, 𝜋1𝑥⟩

[𝑥 : 𝐴 × 𝐵]𝑥

𝜋2𝑥 : 𝐵 𝜋2𝐸
[𝑥 : 𝐴 × 𝐵]𝑥

𝜋1𝑥 : 𝐴 𝜋1𝐸

⟨𝜋2𝑥, 𝜋1𝑥⟩ : 𝐵 × 𝐴 𝜋𝐼

𝜆𝑥𝐴×𝐵.⟨𝜋2𝑥, 𝜋1𝑥⟩ : 𝐴 × 𝐵 → 𝐵 × 𝐴 𝜆𝐼𝑥

41

Curry Howard Correspondence { proof ↔ programs }

Correspondence
Formulae

Atomic hypothesis 𝐴, 𝐵, …
Logical connector →
Logical connector ∧

Types
Atomic types 𝐴, 𝐵, …
Function type →
Product Type ×

42

Curry Howard Correspondence { proof ↔ programs }

Correspondence
Proofs

Inference for →𝐼𝑥 and →𝐸

[𝐴]𝑥

⋮
𝐵

𝐴 → 𝐵 →𝐼𝑥
𝐴 → 𝐵 𝐴

𝐵
→𝐸

Programs
Types for 𝜆𝐼𝑥 and 𝜆𝐸

[𝑥 : 𝐴]𝑥

⋮
𝑦 : 𝐵

𝜆𝑥𝐴.𝑦 : 𝐴 → 𝐵
𝜆𝐼𝑥 𝑓 : 𝐴 → 𝐵 𝑥 : 𝐴

𝑓𝑥 : 𝐵
𝜆𝐸

43

Curry Howard Correspondence { proof ↔ programs }

Correspondence
Proofs

Inference for ∧𝐼 and ∧1𝐸 and ∧2𝐸

𝐴 𝐵
𝐴 ∧ 𝐵 ∧𝐼

𝐴 ∧ 𝐵
𝐴

∧1𝐸
𝐴 ∧ 𝐵

𝐵
∧2𝐸

Programs
Types for ∧𝐼 and ∧1𝐸 and ∧2𝐸

𝑋 : 𝐴 𝑌 : 𝐵
⟨𝑋, 𝑌 ⟩ : 𝐴 × 𝐵

𝜋𝐼

𝐿 : 𝐴 × 𝐵
𝜋1𝐿 : 𝐴

𝜋1𝐸 𝐿 : 𝐴 × 𝐵
𝜋2𝐿 : 𝐵

𝜋2𝐸

43

Curry Howard Correspondence { proof ↔ programs }

Correspondence
Proofs

Normalising (simplifying) of Proof

There’s a finite algorithm that says
if two proofs are equivalent.

Programs
Normalising (running) of Program

Simply Typed Lambda Calculus is
Strongly Normalising and has the
Church Rossier Property.
So, there’s a finite algorithm that
can determine if two Terms are
equivalent.

44

Curry Howard Correspondence { proof ↔ programs }

Correspondence
Proofs

Normalised proofs of a formula
only uses “concepts” present in

the formula.
E.g., Proof of 𝐴 → (𝐴 → 𝐵) → 𝐵

does not need ∧.

Programs
Language features comes in pairs
of Introduction and Elimination

45

Curry Howard Correspondence { proof ↔ programs }

Proving that 𝐴 → (𝐴 → 𝐵) → 𝐵

46

Curry Howard Correspondence { proof ↔ programs }

Proving that 𝐴 → (𝐴 → 𝐵) → 𝐵
1. Convert formula 𝐴 → (𝐴 → 𝐵) → 𝐵 into the type 𝐴 → (𝐴 → 𝐵) → 𝐵

46

Curry Howard Correspondence { proof ↔ programs }

Proving that 𝐴 → (𝐴 → 𝐵) → 𝐵
1. Convert formula 𝐴 → (𝐴 → 𝐵) → 𝐵 into the type 𝐴 → (𝐴 → 𝐵) → 𝐵
2. Find a term (program) that has the type: 𝜆𝑥𝐴𝑓𝐴→𝐵.𝑓𝑥

46

Curry Howard Correspondence { proof ↔ programs }

Proving that 𝐴 → (𝐴 → 𝐵) → 𝐵
1. Convert formula 𝐴 → (𝐴 → 𝐵) → 𝐵 into the type 𝐴 → (𝐴 → 𝐵) → 𝐵
2. Find a term (program) that has the type: 𝜆𝑥𝐴𝑓𝐴→𝐵.𝑓𝑥
3. Convert the justification tree for the type of the term into a proof.

[𝑓 : 𝐴 → 𝐵]𝑓 [𝑥 : 𝐴]𝑥

𝑓𝑥 : 𝐵 𝜆𝐸

𝜆𝑓𝐴→𝐵.𝑓𝑥 : (𝐴 → 𝐵) → 𝐵 𝜆𝐼𝑓

𝜆𝑥𝐴𝑓𝐴→𝐵.𝑓𝑥 : 𝐴 → (𝐴 → 𝐵) → 𝐵𝜆𝐼𝑥 ⟹

[𝐴 → 𝐵]𝑓 [𝐴]𝑥

𝐵
→𝐸

(𝐴 → 𝐵) → 𝐵 →𝐼𝑓

𝐴 → (𝐴 → 𝐵) → 𝐵 →𝐼𝑥

46

Curry Howard Correspondence { proof ↔ programs }

Simplifying a proof that 𝐴 → 𝐵 → 𝐵 ∧ 𝐴

47

Curry Howard Correspondence { proof ↔ programs }

Simplifying a proof that 𝐴 → 𝐵 → 𝐵 ∧ 𝐴
Roundabout proof:
1. Assume 𝐴 and 𝐵, we have 𝐴 ∧ 𝐵 { by rule ∧𝐼 }.
2. Since we’ve previously shown that 𝐴 ∧ 𝐵 → 𝐵 ∧ 𝐴, the result holds.

47

Curry Howard Correspondence { proof ↔ programs }

Simplifying a proof that 𝐴 → 𝐵 → 𝐵 ∧ 𝐴
Roundabout proof:
1. Assume 𝐴 and 𝐵, we have 𝐴 ∧ 𝐵 { by rule ∧𝐼 }.
2. Since we’ve previously shown that 𝐴 ∧ 𝐵 → 𝐵 ∧ 𝐴, the result holds.

Proof corresponds to program: 𝜆𝑥𝐴𝑦𝐵.(𝜆𝑥𝐴×𝐵.⟨𝜋2𝑥, 𝜋1𝑥⟩)⏟⏟⏟⏟⏟⏟⏟⏟⏟
proof that 𝐴∧𝐵→𝐵∧𝐴

⟨𝑥, 𝑦⟩

47

Curry Howard Correspondence { proof ↔ programs }

Simplifying a proof that 𝐴 → 𝐵 → 𝐵 ∧ 𝐴
Roundabout proof:
1. Assume 𝐴 and 𝐵, we have 𝐴 ∧ 𝐵 { by rule ∧𝐼 }.
2. Since we’ve previously shown that 𝐴 ∧ 𝐵 → 𝐵 ∧ 𝐴, the result holds.

Proof corresponds to program: 𝜆𝑥𝐴𝑦𝐵.(𝜆𝑥𝐴×𝐵.⟨𝜋2𝑥, 𝜋1𝑥⟩)⏟⏟⏟⏟⏟⏟⏟⏟⏟
proof that 𝐴∧𝐵→𝐵∧𝐴

⟨𝑥, 𝑦⟩

Normalised program: 𝜆𝑥𝐴𝑦𝐵.⟨𝑦, 𝑥⟩

47

Curry Howard Correspondence { proof ↔ programs }

Simplifying a proof that 𝐴 → 𝐵 → 𝐵 ∧ 𝐴
Roundabout proof:
1. Assume 𝐴 and 𝐵, we have 𝐴 ∧ 𝐵 { by rule ∧𝐼 }.
2. Since we’ve previously shown that 𝐴 ∧ 𝐵 → 𝐵 ∧ 𝐴, the result holds.

Proof corresponds to program: 𝜆𝑥𝐴𝑦𝐵.(𝜆𝑥𝐴×𝐵.⟨𝜋2𝑥, 𝜋1𝑥⟩)⏟⏟⏟⏟⏟⏟⏟⏟⏟
proof that 𝐴∧𝐵→𝐵∧𝐴

⟨𝑥, 𝑦⟩

Normalised program: 𝜆𝑥𝐴𝑦𝐵.⟨𝑦, 𝑥⟩
Normalised proof: Assume 𝐴 and 𝐵, we have 𝐵 ∧ 𝐴 { by rule ∧𝐼 }.

47

What now?

What now?

Proofs
Logical connector → (implication)

Logical connector ∧ (and)

Logical connector ∨ (or)

Quantifiers ∀ (for all) and ∃ (exists)

Second5order intuitionistic predicate logic

Intuitionist → Classical Logic

Programs
Function definition & application
{ Haskell Curry, 1934 }

Product Types { William Howard, 1969 }

Sum Types/Enums { William Howard, 1969 }

Dependent Types/Types depend on values
• E.g., Array type paired with its length int[5]
{ William Howard, 1969 }

Polymorphism/Generic Programming
{ Girard & Reynolds, 1972/1974 }

Continuous Passing { Tim Griffin, 1990 }

49

Programming Language Design
is often seen as ad-hoc.

Curry-Howard Correspondence
gives us a solid theory

of certain language features

Thank you!

Summary
1. Untyped Lambda Calculus { programming language }
2. Simply Typed Lambda Calculus { programming language }
3. Proof System (∧ and →) { proof system }
4. Curry Howard Correspondence { proof ↔ programs }
5. What now?

51

	Curry Howard Correspondence
	Curry Howard Correspondence
	Uses of the Correspondence
	Interactive Theorem Provers
	Example of a Proposition
	To Prove
	Attempt 1: Bruteforce (the usual way we test software)
	To Prove
	Attempt 2: Define the constructs to the computer and compose theorems
	Proof System
	Example of a (non-trivial but easy) Mathematical Proof
	Reflection Questions:
	Taster in what a Computer needs: { a rabbithole everywhere }
	Work not in Proof Systems but in Programs
	Proof System Side
	Programming Side
	Demonstrate the correspondence between Proofs and Programs:
	Lambda Expressions { in Python }
	Lambda Expressions { in Untyped Lambda Calculus }
	Two Concepts of Untyped Lambda Calculus
	Eliminating Brackets
	Rules of Order of Operation
	Executing an example program
	Executing an example program
	Simply Typed Lambda Calculus
	Types
	Typing Rules
	Typing Rules
	Examples
	Adding Pairs in the Language
	Typing Rules for Pairs: Product Types
	Example with Product Types
	Typing terms
	Are all Untyped Lambda terms Typeable (in our language)?
	Simply Typed Lambda Calculus is Strongly Normalising
	Simply Typed Lambda Calculus has the Church-Rosser property
	Determine if two programs are equivalent:
	Example:
	Language for Formulas
	Rules of Inference
	Example: Prove that (A ∧ B) → (B ∧ A)
	Correspondence
	Proof that (A ∧ B) → (B ∧ A)
	Type of λ xA × B. ⟨ π2 x, π1 x ⟩

	Correspondence
	Proof that (A ∧ B) → (B ∧ A)
	Type of λ xA × B. ⟨ π2 x, π1 x ⟩

	Correspondence
	Proof that (A ∧ B) → (B ∧ A)
	Type of λ xA × B. ⟨ π2 x, π1 x ⟩

	Correspondence
	Formulae
	Types

	Correspondence
	Proofs
	Programs

	Correspondence
	Proofs
	Programs

	Correspondence
	Proofs
	Programs
	Proving that A→(A→B)→B
	Simplifying a proof that A→B→B ∧ A
	Proofs
	Programs
	Summary

