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Abstract

This report explores removing the overhead associated with dynamic typing in CPython (the
reference implementation of Python) using a modified version of lazy basic block versioning [1].
The report also introduces a (to the best of our knowledge) novel type propagation algorithm
that is composed of simple type operations on references to types. A speedup of 39% is observed
for non-representative workloads purely involving floating-point arithmetic.

1 Introduction

Python is a widely-used programming language [2]. CPython [3] is its reference implementation.
Due to Python’s dynamic type semantics, CPython is generally unable to execute Python programs
as fast as it potentially could with static type semantics.

A technique for removing type check and other overheads associated with dynamic languages
is lazy basic block versioning [1]. Lazy basic block versioning is a novel technique for writing
Just-in-Time (JIT) compilers. This report thus modifies a fork of the CPython 3.12 runtime to
implement lazy basic block versioning (without native machine code generation), type propagation,
and unboxed float arithmetic, among other optimisations. The modified runtime is called pyLBBV.

Due to the Python language’s large scope, pyLBBV only optimises a subset of Python. Specif-
ically, pyLBBV focuses on integer and float arithmetic. We believe this limited subset of Python
is enough to showcase pyLBBV’s type propagation algorithm and other optimisations.

1.1 CPython Bytecode Architecture Tiers

Execution of CPython is split into logical “tiers” [4]. These tiers reflect ascending levels of
optimisations and thus execution speed. Tier 0 is generic microcode (termed CPython bytecode)
initially emitted by the CPython compiler (Fig. 1).
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Fig. 1: T-Diagram of Tier 0 CPython Bytecode

Tier 1 is generic bytecode generated by CPython’s Specializing Adaptive Interpreter. At run-
time, Tier 0 instructions observe common usage patterns and types [5]. Tier 0 instructions then
rewrite themselves to Tier 1 instructions if an instruction matching the pattern is observed. Since
this optimisation is speculative, Tier 1 instructions contain guards that fall back onto Tier 0
instructions on failure. Tier 1 instructions are able to rewrite themselves back to their generic Tier
0 counterparts if too many guard failures occur (Fig. 2).

Fig. 2: Instruction state diagram of Tier 0 instruction BINARY OP transitioning to Tier 1 BINARY OP ADD INT

and BINARY OP ADD FLOAT and vice versa.

Tier 1 instructions are only capable of speculative optimisation and exploit single-instruction
regions of type stability. They are not capable of doing large-scale optimisations as seen in a
statically typed language.

pyLBBV introduces a new tier of instructions - Tier 2. Tier 2 instructions are relatively lower-
level than Tier 1 instructions. Each instruction is less complex and executes less code. Tier 1
instructions can be viewed as being composed of multiple Tier 2 instructions. Tier 2 instructions
have typed variants that operate only on specific types. Tier 2 instructions and their benefits will
be further explained in subsequent sections.

1.2 Goals

Our base goals:

1. Implement the lazy basic block versioning infrastructure.
2. Implement type propagation.
3. Augment CPython’s DSL to support type propagation rules.
4. Implement type guard elimination for arithmetic integer and float operations.
5. Run benchmarks from CPython’s pyperformance benchmark suite.
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We achieved all of our base goals except for running benchmarks. We only ran a single bench-
mark (the nbody benchmark) from CPython’s pyperformance benchmark suite. We were unable
to run more benchmarks due to time constraints.

Our reach goals:

1. Implement type guard elimination for container types (list, tuple, etc.).
2. Implement interprocedural type propagation.
3. Implement unboxed arithmetic for doubles.
4. Run even more benchmarks from CPython’s pyperformance benchmark suite.

We achieved some of our reach goals. Namely, we achieved type guard elimination for one
container type (list), and unboxed arithmetic for doubles. We were not able to do interprocedural
type propagation or run additional benchmarks from pyperformance.

2 Lazy Basic Block Versioning Tier 2 Architecture Overview

The C structure representing executable CPython bytecode is PyCodeObject. In pyLBBV, each
PyCodeObject has a hot counter that starts at −64. Each execution of a backwards jump or the
PyCodeObject’s entry point increments the hot counter by 1. Hence the hot counter accounts for
“hot” loops in a PyCodeObject, not just the number of times the PyCodeObject is called. When
the hot counter reaches 0, pyLBBV attempts to generate Tier 2 bytecode on the next entry to the
PyCodeObject.

By the time the hot counter reaches 0, Tier 1 specialisation would have triggered. So upon the
next entry to the PyCodeObject, pyLBBV searches for optimisable bytecode, which are bytecodes
which we have Tier 2 equivalents for and are also Tier 1 specialised (E.g., int or float specialised
BINARY_OP). pyLBBV uses Tier 1 specialisation as a proxy for whether the types encountered are
primitive (E.g., int or float), as the absence of Tier 1 specialised bytecode would indicate that the
PyCodeObject failed to encounter primitive types. If no optimisable bytecode is found, pyLBBV
does not generate Tier 2 bytecode, and instead falls back to Tier 1 bytecode.

The type context, the data-structure the type propagator uses to keep track of type information,
is then initialised. Tier 1 bytecode is then copied into the PyCodeObject’s Tier 2 instruction array
until pyLBBV hits a branch or an optimisable bytecode. The type propagator propagates the type
context through each emitted instruction. If it is a branch, pyLBBV emits a branch instruction
which contains information on the next Tier 1 instruction to start the next basic block from. These
branch instructions supports the lazy generation of basic blocks during execution of bytecode. See
4.2.1 for more details on jump rewriting. Executing the branch instruction triggers the generation of
the target branch and this process repeats until the execution hits a scope exit, an instruction that
exits the PyCodeObject (E.g., RETURN_VALUE). One benefit of directly copying Tier 1 instructions
is that their inline cache entries are preserved, thus their previous specialisation attempts are not
wasted.

If pyLBBV encounters an optimisable bytecode and the types of its operands are unknown,
pyLBBV emits a type guard, an instruction that checks the types of variables on the stack, followed
by a branch instruction that determines if the type guard has passed. Similar to above, the runtime
then runs the newly emitted bytecode until it hits the branch instruction.

If the type guard passed, the type propagator then updates the type context with the typing
information gained via the type guard, and generates a type-specialised version of the target basic
block (e.g, guard elimination, unboxing). See 4.3 for more details. Otherwise, the runtime emits a
new type guard and a branch instruction. See 4.1.1 for more details. Here, the type propagator is
used to inform the Tier 2 code generator whether it can guarantee a variable is of a certain type,
and hence which optimisations can be performed.

Furthermore, as will be illustrated below, the type guards result in potentially multiple “ver-
sions” of a basic block in Tier 2, each version specialised to an encountered type context. Due to
the lazy nature of this generation, branches not taken or type context never encountered will not
trigger the generation of a Tier 2 basic block. This allows for automatic dead code elimination.
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Eventually the PyCodeObject encounters all the type contexts it needs to handle, and will
stabilise (no new Tier 2 code generated). The code generator and type propagator will now no longer
be invoked on this PyCodeObject for any subsequent executions (assuming the types observed at
runtime do not change).

2.1 Example

1 def f(a,b):

2 return a+b+a

3
4 for _ in range(63): f(1.0, 1.0)

5 f(1.0, 1.0)

6 f(1, 1)

Tier 2 generation is illustrated in the above code snippet. Note that at line 5 (Fig. 3), Tier
2 is triggered on f with the types {a: float, b: float}. At line 6, f is called with types
{a: int, b: int} (Fig. 4).

Fig. 3: Tier 2 bytecode generation during the execution of line 5

Fig. 4: Tier 2 bytecode generation during the execution of line 6

At line 5, after the two LOAD_FAST are emitted, a BINARY_OP instruction is encountered and
the code generator emits a BINARY_CHECK_FLOAT. The runtime then executes until the type guard,
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which passes. The type propagator then updates the type context and emits the rest of the bytecode,
unboxing the float (see 4.3.2) and eliminating the type-guard in the subsequent BINARY_OP. The
runtime then executes the newly emitted bytecode until scope exit (E.g. RETURN_VALUE).

At line 6, the type guard BINARY_CHECK_FLOAT fails, triggering BB_BRANCH_IF_FLAG_UNSET

to rewrite itself to BB_JUMP_IF_FLAG_UNSET and the code generator to emit another type guard
BINARY_CHECK_INT. The runtime then executes the new type guard which passes, and the type
propagator updates the type context and similarly emits the rest of the bytecode.

Any subsequent evaluation of f on (float,float) or (int,int) will not result in any more
new Tier 2 bytecode.

3 Type Propagator

To recap, the type propagator is used during the generation of Tier 2 bytecode to inform the
code generator whether we can guarantee a variable is of a certain type. The code generator then
uses this information to emit the next bytecode(s) and calls the type propagator to propagate over
the newly emitted bytecode.

This report defines the data structure from which we store the type information of the CPython
PyCodeObject as the type context. The type context mirrors the CPython run-time state dur-
ing execution (e.g., the operand stack pointer stack_ptr at the current instruction matches the
stack_ptr of the type context when propagating across said instruction). The type propagator
hence “interprets” the bytecode. Each Basic Block stores a type context at its exit to support the
lazy generation of bytecode and backwards-jump targets store a type context at their entry. See
Section 4 for more details.

3.1 Type Context

Mirroring CPython’s PyCodeObject, the type context contains a stack (type_stack) and a
local variables array (type_locals). The type propagator does not include an analogue for the
constant array (co_const) and instead directly queries the executing PyCodeObject’s co_const

for type information of constants, which is possible as co_const is never written to.

Each item in the type_stack and type_locals is a node of a tree. Each node has a unique
parent but can have multiple children, each of which is another node in the same type context.
Trees are a useful construct in relating two nodes that are guaranteed to be of the same type: If
two nodes are in the same tree, they are the same type. The tree’s root is used to determine the
type of the entire tree.

// Retrieved from /Include/cpython/code.h

typedef struct _PyTier2TypeContext {

// points into type_stack, points to one element after the stack

_Py_TYPENODE_t *type_stack_ptr;

int type_locals_len;

int type_stack_len;

_Py_TYPENODE_t *type_stack;

_Py_TYPENODE_t *type_locals;

} _PyTier2TypeContext;

The type context data structure _PyTier2TypeContext (above) is very simple memory-wise,
consisting mainly of two arrays type_stack and type_locals. Each node (_Py_TYPENODE_t) is a
tagged pointer. Since pyLBBV can assume pointer alignment, the lower 2 bits of each pointer are
used to tag a _Py_TYPENODE_t:

// Retrieved from /Include/cpython/code.h

typedef enum _Py_TypeNodeTags {

// An invalid node without a tag, kept for catching bugs

TYPE_NULL = 0,

// The root of a tree.
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// TYPE_ROOT can point to a PyTypeObject or be a NULL

TYPE_ROOT = 1,

// A non-root of a tree (has a parent).

// TYPE_REF points to a TYPE_ROOT or a TYPE_REF

TYPE_REF = 2

} _Py_TypeNodeTags;

The entire tree can be encoded within tagged pointers. Managing the memory of these trees
is hence very simple, requiring only a single allocation and de-allocation through the lifetime of a
type context.

Accessing the parent of a node only involves a dereference. However, enumerating the children
of a node requires traversing the entire type_stack and type_locals arrays. In practice, these
arrays are small and a linear search suffices.

3.1.1 Design Motivation

The reason for representing variables as nodes of trees is to encode relationships between
variables. Take for instance:

def f(a,b):

return a+b

f(1,1)

which generates the following trace:

offset: 1

[-] Type propagating across: LOAD_FAST : 0

Stack: 000001F5B5C096C0: [ ?->locals[0]]

Locals 000001F5B5C096F0: [ ? ?]

offset: 2

[-] Type propagating across: LOAD_FAST : 1

Stack: 000001F5B5C096C0: [ ?->locals[0] ?->locals[1]]

Locals 000001F5B5C096F0: [ ? ?]

offset: 3

[-] Type propagating across: BINARY_CHECK_INT : 1

Stack: 000001F5B5C09780: [ int->locals[0] int->locals[1]]

Locals 000001F5B5C09720: [ int int]

offset: 3

[-] Type propagating across: BINARY_OP_ADD_INT_REST : 0

Stack: 000001F5B5C09780: [ int]

Locals 000001F5B5C09720: [ int int]

The two LOAD_FAST loads both locals onto the stack and BINARY_CHECK_INT checks if the last
two stack variables are integers. If they are, then the type propagator also knows that the two local
variables are integers as well.

This “propagation” of type information is crucial for CPython bytecode, as suppose otherwise
that BINARY_CHECK_INT does not result in the propagator knowing that the local variables are
integers. Then the subsequent BINARY_OP_ADD_INT_REST will overwrite the first stack variable with
another integer representing the result, and subsequent instructions could potentially overwrite the
second stack variable as well. Any subsequent LOAD_FAST 0 and LOAD_FAST 1 will require a type
check again, rendering the previous BINARY_CHECK_INT type check useless.

3.2 Type Operations

The type propagator implements propagation rules for each CPython bytecode instruction,
where each instruction modifies the trees in the type context. In pyLBBV, the propaga-
tion rules for most instructions can be accurately modelled with 3 type operations in order
of frequency: TYPE_OVERWRITE, TYPE_SET and TYPE_SWAP. Each operation has the rough syn-
tax of type_operation(src, dst), where the source (src) and destination (dst) are nodes.
Note that src node might not be in the type context as in the case of “introducing”
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a new root. E.g., GET_LEN pushes an integer (PyLong_Type) onto the stack, whereby the
src = set_root_tag(&PyLong_Type) is a root node not part of the type context.

3.2.1 TYPE OVERWRITE

TYPE_OVERWRITE(src, dst) is an operation to model an “overwriting”. dst gets overwritten
by src so dst now has the same type as src and the old dst node no longer exists. In terms
of trees, the type propagator is removing dst for its tree and making dst a child of src. These
present 4 cases:

1. If dst is a root and src is in the type context, set one of the children of dst as the new root
and set dst to be a child of src.

2. If dst is not a root and src is in the type context, set all of the children of dst to point to
dst’s parent and set dst to be a child of src.

3. If dst is a root and src is not in the type context, set one of the children of dst as the new
root and write src to dst.

4. If dst is not a root and src is not in the type context, set all of the children of dst to point
to dst’s parent and write src to dst.

An example of where such an operation is used is in BINARY_OP_ADD_INT_REST, where the
result of the operation overwrites a stack variable.

Fig. 5: Case 1 and 2 of TYPE OVERWRITE illustrated

3.2.2 TYPE SET

TYPE_SET(src, dst) is an operation to model the gain in knowledge that two nodes share the
same type. All nodes of dst’s tree will have the same type as the src’s node. In terms of trees, we
take the root of the dst’s tree and make it part of the src tree, effectively making the dst’s tree
a subtree of the src tree. These similarly presents 2 cases:

1. If src is in the type context, set the root of the dst’s tree as a child of the src node.
2. If src is not in the type context, write src to dst’s tree’s root.

An example of where such an operation is used is in BINARY_CHECK_INT, where the type
propagator gains the knowledge that the top two stack variables are integers.

3.2.3 TYPE SWAP

TYPE_SET(src, dst) is an operation to model the swapping of the positions of two nodes
within the type context. In terms of trees, if src and dst are part of the same tree, the type
propagator does nothing. Otherwise, the nodes are swapped and the parents and children of both
nodes are modified to preserve both trees. The only CPython instruction that utilises this is SWAP,
which swaps the position of two stack elements.
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3.3 Modified Domain Specific Language

The type propagator implements propagation rules for all instructions, and as pyLBBV contains
194 instructions, it is infeasible to write the propagation rules manually.

During the development of CPython 3.12 (the current version in development as of writing),
CPython introduced a Domain Specific Language (DSL) to generate the interpreter. The DSL
serves as a specification for the behaviour of each instruction. This is similar to describing the
structural operational semantics of Python.

Since most instruction’s type propagation rules can be determined statically, pyLBBV’s
approach is to augment the DSL with additional semantics to describe the type propagation
rules and use the DSL to generate the type propagator. Each instruction’s propagation rules
can be expressed as a sequence of type operations (TYPE_OVERWRITE, TYPE_SET, TYPE_SWAP), and
pyLBBV’s modified DSL allows specifying said sequence for each instruction.

These modifications allow for the type propagator to be generated directly from the same DSL
definition as CPython bytecode, thus reducing duplication in code. pyLBBV’s type propagator is
just under 1000 lines of handwritten C code, with 400 lines of C code for extraneous supporting
functions. The DSL-generated type propagation for CPython instructions is over 1000 lines of
generated C code. This thus presents a significant reduction of developer maintenance burden.

3.3.1 A Brief Introduction to CPython’s Interpreter DSL

The DSL syntax for an instruction consists of a header and body [6]. The header specifies the
stack effect and inline cache, while the body specifies the behaviour of the instruction. Take for
instance the Tier 1 instruction BINARY_OP_MULTIPLY_INT:

// Retrieved from /Python/bytecodes.c

// Header start

macro_inst(BINARY_OP_MULTIPLY_INT, (unused/1, left, right -- prod))

// Header end

{

// Body start

assert(cframe.use_tracing == 0);

DEOPT_IF(!PyLong_CheckExact(left), BINARY_OP);

DEOPT_IF(!PyLong_CheckExact(right), BINARY_OP);

U_INST(BINARY_OP_MULTIPLY_INT_REST);

// Body end

}

For the header, unused/1 specifies the size of the inline cache, which follows the format
IDENTIFIER "/" NUMBER. This affects how much to increment the instruction pointer after execut-
ing the instruction. left and right specifies the input operand stack variables, and prod specifies
the output operand stack variable(s). The input and output are separated by a "--". Their relative
position also tells the interpreter generator at what offsets they are in the operand stack.

Stack variables can also be named unused. These variables are by convention,
untouched by the body. There are also size-stack variables, which follow the format
IDENTIFIER "[" EXPRESSION "]", where EXPRESSION’s only free variable is oparg, the argument
to the instruction. Size-stack variables specify a sequence of stack variables. An example of both
of these is in the instruction COPY, which copies the (oparg-1)th element from the top to the top
of the operand stack.

// Retrieved from /Python/bytecodes.c

inst(COPY, (bottom, unused[oparg-1] -- bottom, unused[oparg-1], top)) {

assert(oparg > 0);

top = Py_NewRef(bottom);

}
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Since the type propagator will only use the header, an introduction to the body is omitted.

3.3.2 Additional DSL Syntax for Specifying Propagation Rules

An instruction’s propagation rules consist of two components

1. localeffect : How the instruction affects the types of the local variables array
2. stackeffect : How the instruction affects the types on the stack

pyLBBV specifies the localeffect at the end of the instruction header in the DSL, and the
stackeffect as a collection of type annotations at the end of each output stack variable. For instance,
here are examples of localeffect and type annotations respectively:

inst(STORE_FAST, (value --), locals[oparg] = *value) {...}

inst(BINARY_CHECK_INT, (left, right -- left:<<= PyLong Type, right:<<= PyLong Type)) {...}

In both the localeffect and type annotations, pyLBBV specifies the src and the dst in a type
operation, src being green, dst being pink and the operation in cyan. The type operation for
localeffect is always a TYPE_OVERWRITE.

inst(STORE_FAST, (value --), locals[oparg] = *value) {...}

inst(BINARY_CHECK_INT, (left, right -- left:<<= PyLong Type, right:<<= PyLong Type)) {...}

The src for a localeffect can be either a typeliteral (e.g., PyLong_Type) or an input stack
variable, while src for a type annotation can either be a typeliteral, input stack variable, an
element from the PyCodeObject’s locals array or constant array. In this sense, knowledge of types
only comes from a type operation with either an element from the constant array or a typeliteral
as the source.

Both the localeffect and type annotations for each output stack variable are optional. See
Appendix A for how pyLBBV handles those. Localeffect and type annotations have the following
EBNF:

local_effect := "locals" "[" expr "]" "=" local_source

local_source := localsrc_literal | localsrc_stackinput

localsrc_literal := identifier

localsrc_stackinput := "*" identifier

type_annotation := ("{" type_operation ( "," type_operation )... "}" )

| type_operation

type_operation := type_set | type_overwrite

type_set := "<<=" type_source

type_overwrite := type_source

type_source := typesrc_literal

| typesrc_locals

| typesrc_const

| typesrc_stackinput

typesrc_literal := identifier

typesrc_locals := "locals" "[" expr "]"

typesrc_consts := "consts" "[" expr "]"

typesrc_stackinput := "*" identifier

From the EBNF, pyLBBV can formally specify how the added semantics will generate the type
propagator by specifying the operational semantics which describes the propagator’s behaviour.
See Appendix A for the full specification.

3.4 Handling Run-time Dependent Stack Effect

The DSL approach works well for instructions whose type propagation rules can be determined
statically. Unfortunately, there is a class of branch instructions with runtime-dependent stack effect.
E.g., BB_TEST_ITER tests if the iterator (iter) on the stack has a next element, and if so, it pushes
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next onto the stack. Otherwise, the iterator is exhausted and BB_TEST_ITER pops iter off the
stack.

This presents an issue for pyLBBV as it type propagates before execution. For these class of
instructions, since they appear at the end of a basic block and the conditional stack effect also
determines the branch that will be taken, pyLBBV type propagates when the target branch’s
generation is triggered. At that point, pyLBBV knows which branch was taken and hence the stack
effect of the instruction. Thus it can modify the type context accordingly before generating the
branch.

4 Basic Block Generation

Some Tier 2 bytecode split their Tier 1 counterparts, separating the type checking from the
main operation. To prevent code duplication, pyLBBV introduced macro_inst and u_inst into
the DSL, where a macro_inst can be inlined with u_inst(s). For instance, pyLBBV can split
BINARY_OP_MULTIPLY_INT as such:

// Retrieved from /Python/bytecodes.c

macro_inst(BINARY_OP_MULTIPLY_INT, (unused/1, left, right -- prod)) {

assert(cframe.use_tracing == 0);

DEOPT_IF(!PyLong_CheckExact(left), BINARY_OP);

DEOPT_IF(!PyLong_CheckExact(right), BINARY_OP);

U_INST(BINARY_OP_MULTIPLY_INT_REST);

}

u_inst(BINARY_OP_MULTIPLY_INT_REST, (left, right -- prod : PyLong_Type)) {

STAT_INC(BINARY_OP, hit);

prod = _PyLong_Multiply((PyLongObject *)left, (PyLongObject *)right);

_Py_DECREF_SPECIALIZED(right, (destructor)PyObject_Free);

_Py_DECREF_SPECIALIZED(left, (destructor)PyObject_Free);

ERROR_IF(prod == NULL, error);

}

4.1 Lazy Generation

4.1.1 The “Ladder” of Types

In basic block versioning, operations and their type checks are defined in the same language
that is being executed (JavaScript). Similar to the lazy basic block Versioning [1] paper, a type
check failure generates another type check in the modified runtime. However the key difference
in pyLBBV is that pyLBBV does not define type checks in Python itself. Instead, type checks
follow a simple ladder of type checks. For example, after a BINARY_CHECK_FLOAT failure occurs, a
BINARY_CHECK_INT is emitted.

Eventually, the end of the ladder of types is reached. When pyLBBV bottoms out, it falls
back on Tier 0/1 by emitting a Tier 0/1 instruction. This thus allows pyLBBV to handle code
polymorphism and type instability.

// Retrieved from /Python/tier2.c

static int type_guard_ladder[256] = {

-1,

BINARY_CHECK_FLOAT,

BINARY_CHECK_INT,

-1,

CHECK_LIST,

-1,

};
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4.2 Transformations

4.2.1 Jump Rewriting

Since basic blocks of varying lengths are generated on the fly, jump offsets are not known
initially. Jump instructions need to be re-written as new basic blocks are generated. pyLBBV thus
contains transient self-rewriting Tier 2 jump instructions that modify themselves depending on
which successor basic block is generated. The key benefit of this is that this does not require any
code passes as the instruction itself is responsible for its own modifications.

CPython has (as of 30/03/2023), 11 different jump instructions. pyLBBV has self-rewriting
counterparts for most of these (Table 1).

Table 1: CPython jump instruction transformations

Tier 0/1 Jump Instruction Tier 2 equivalent

FOR_ITER BB_TEST_ITER1

POP_JUMP_IF_FALSE BB_TEST_POP_IF_FALSE

POP_JUMP_IF_TRUE BB_TEST_POP_IF_TRUE

POP_JUMP_IF_NOT_NONE BB_TEST_POP_IF_NOT_NONE

POP_JUMP_IF_NONE BB_TEST_POP_IF_NONE

JUMP_BACKWARD BB_JUMP_BACKWARD_LAZY

All of these instructions set a runtime flag depending
on the test, and precede a BB BRANCH instruction. The
BB BRANCH instruction is responsible for checking the flag
and generating (then jumping to) the successor basic
block.
1This instruction specialises to other instructions. (See
Table 2)

After both outgoing edges of a basic block are generated, the jump offsets are known. Thus the
branch instruction rewrites itself back to a simple jump instruction to reduce overhead.

4.2.2 Backward Jump Rewriting

A special class of jumps are backwards jumps. These occur at the end of loop constructs such
as for and while statements. While the offsets of Tier 2 backwards jumps are known (as any
basic block prior to the jump should have already been generated), whether it is safe to jump to
that jump target is unknown. Previous loop iterations may have modified the type context, thus
rendering the entire loop body type-unsafe to jump to.

pyLBBV’s solution is similar to that implemented in the original lazy basic block versioning [1]
paper. pyLBBV stores metadata about backwards jump targets in the code object.

// Retrieved from /Include/cpython/code.h

// Tier 2 info stored in the code object. Lazily allocated.

typedef struct _PyTier2Info {

// ...

_PyTier2BBStartTypeContextTriplet **backward_jump_target_bb_pairs;

// ...

} _PyTier2Info;

// ...

typedef struct _PyTier2BBStartTypeContextTriplet {

int id;

_Py_CODEUNIT *tier1_start;

_PyTier2TypeContext *start_type_context;

} _PyTier2BBStartTypeContextTriplet;
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pyLBBV contains a custom diff function to calculate the “distance” of two type contexts (in
this case, the jump target type context and the current type context at the backwards jump). The
diff function allows for type widening, but not narrowing, nor does it allow for interchanging of
boxed and unboxed types.

If the “distance” is too large, a new loop entry basic block is generated, using the type context
at the backward jump. The backward jump then self-rewrites to a forward jump to jump into the
new loop body.

4.2.3 Specialised Tier 2 Iteration Instructions

The Tier 2 BB_TEST_ITER iteration instruction further specialises itself depending on the
iterator it observes at runtime. This uses the same infrastructure as the Tier 1 Specializing Adap-
tive Interpreter. See Table 2 for the full list of specialised Tier 2 instructions. In general, these
instructions contain code optimised for the specific iterator that is being iterated.

Table 2: BB TEST ITER transformations

Type observed BB_TEST_ITER rewritten to

PyRangeIter_Type BB_TEST_ITER_RANGE

PyListIter_Type BB_TEST_ITER_LIST

PyTupleIter_Type BB_TEST_ITER_TUPLE

These instructions contain guards, as with their
Tier 1 counterparts.

4.3 Optimisations

4.3.1 Guard Elimination

All Tier 1 instructions are speculative. They exploit single instruction regions of type stability.
During the course of their lifetime, their operand types may change. Thus, Tier 1 instructions have
guards to fall back to generic Tier 0 instructions.

These guards are not free. They require test and branches. Guards may incur some overhead
in terms of CPU branch mispredictions. For example, the Tier 1 instruction BINARY_OP_ADD_INT

looks like this:

// Retrieved from /Python/bytecodes.c

macro_inst(BINARY_OP_ADD_INT, (unused/1, left, right -- sum)) {

assert(cframe.use_tracing == 0);

DEOPT_IF(!PyLong_CheckExact(left), BINARY_OP);

DEOPT_IF(Py_TYPE(right) != Py_TYPE(left), BINARY_OP);

U_INST(BINARY_OP_ADD_INT_REST);

}

Note the DEOPT_IF C macros. These check that the operands are indeed the type PyLongObject
(CPython’s arbitrary precision integers).

Due to information gathered by type propagation, the runtime can infer when the operands
left and right are guaranteed to be PyLongObject. Thus, the runtime can eliminate the guards in
the instruction. This is represented by emitting the instruction BINARY_OP_ADD_INT_REST, which
is logically equivalent to BINARY_OP_ADD_INT, excluding the guards.

// Retrieved from /Python/bytecodes.c

u_inst(BINARY_OP_ADD_INT_REST, (left, right -- sum : PyLong_Type)) {

STAT_INC(BINARY_OP, hit);

sum = _PyLong_Add((PyLongObject *)left, (PyLongObject *)right);

_Py_DECREF_SPECIALIZED(right, (destructor)PyObject_Free);

_Py_DECREF_SPECIALIZED(left, (destructor)PyObject_Free);
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ERROR_IF(sum == NULL, error);

}

BINARY_OP_ADD_INT_REST thus does not incur the same guard overhead as the original
BINARY_OP_ADD_INT. The rules used when deciding when to emit a guardless instruction are in
Table 3.

Table 3: Guardless Instruction Rules

Type 1 Type 2 Operation(s) Instruction(s) emitted

Arithmetic Operations

PyLong_Type PyLong_Type +-* BINARY_OP_X_INT 1

PyFloat_Type PyFloat_Type +-*

UNBOX FLOAT 0
UNBOX FLOAT 1
BINARY OP X FLOAT UNBOXED 2

PyRawFloat_Type PyRawFloat_Type +-* BINARY_OP_X_FLOAT_UNBOXED

Container Subscript Operations

PyList_Type PyLong_Type (Must be 64-bit long) [] X_SUBSCR_LIST_INT 3

These are expressed in our code with the infer BINARY OP and infer BINARY SUBSCR functions in
Python/tier2.c.
1Where X refers to the arithmetic operation being applied (ADD, SUBTRACT, MULTIPLY).
2These instructions are explained in more detail in 4.3.2.
3Where X refers to a whether the binary subscript is a store operation (BINARY, STORE). This instruction
contains a single guard to check that the subscripting index does not exceed the container’s length.

One aspect of emitting instructions which are not speculative and guarantee their input types,
is that their output types are also guaranteed. They follow the following rule:

Γ ⊢ O1 : t1 Γ ⊢ O2 : t2
Γ ⊢ p1[O1, O2] : t3

[Tier2BinaryOp]

Where Γ is the type context, O1 and O2 are the operand stack operands, and p1 is one of the
Tier 2 binary operations. t1 and t2 are the respective types of the operands, and t3 is the output
type. The type inference rules for some operations are found in Table 4.

Table 4: Basic Type Inference Rules

t1 t2 p1 t3 emitted

Arithmetic Operations

PyLong_Type PyLong_Type +, -, * PyLong_Type

PyFloat_Type PyFloat_Type +, -, * PyFloat_Type

PyRawFloat_Type PyRawFloat_Type +, -, * PyRawFloat_Type

List Subscript Operations

PyList_Type PyLong_Type (Must be 64-bit long) [] Unknown

These are expressed in our code with the Tier 2 instruction DSL.

These allow the output types of certain operations to feed information back to the type prop-
agator, and allows for type information to continue accumulating as more Tier 2 instructions are
executed, thus eliminating more guards over time.

4.3.2 Loop Peeling

A positive side-effect of how backwards jump are handled (see 4.2.2) is that loop peeling occurs
naturally. Multiple loop bodies are generated until the type context of the loop body stabilises.
Backward jumps of the loop bodies of peeled iterations are rewritten to forward jumps to jump
into the loop body specialised for the next iteration’s type context.
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For example, the code in Fig. 6 generates 3 loop bodies (1 more than required due to a slight
inefficiency in pyLBBV’s implementation).

Fig. 6: Generated bytecode for a function with initially unstable types.

This allows for pyLBBV to exploit type stability in loops, and account for type instability in
initial iterations of loops.

4.3.3 Double Unboxing

CPython double/float objects are represented as a PyFloatObject, which is a simple C
structure with a field containing the double value itself.

// Retrieved from /Include/cpython/floatobject.h

typedef struct {

PyObject_HEAD

double ob_fval;

} PyFloatObject;

Note that CPython does not support auto-promotion of floating-point values (i.e. there’s no
promotion of float32 to float64 to float128). Note that CPython also does not support auto
boxing and unboxing of doubles unlike other languages (and their runtimes) like Java. All CPython
floating-point arithmetic use the 64-bit C double.

With the type propagator and the type inference rules, there is enough information at runtime
to guarantee that certain double operations are always type safe. The runtime can unbox the
PyFloatObjects into raw double values by simply extracting the value from the PyFloatObject

and replacing the PyFloatObject with a double on the operand stack. pyLBBV thus introduces
an UNBOX_FLOAT instruction. This takes inspiration from the Multi Level Quickening paper which
takes a similar approach [7].

The following is the CPython instruction DSL definition of UNBOX_FLOAT. Note the type stack
effect: it writes a PyRawFloat_Type to the type stack at the oparg’s offset.

// Retrieved from /Python/bytecodes.c

inst(UNBOX_FLOAT, (

boxed_float, unused[oparg]

--

unboxed_float : PyRawFloat_Type, unused[oparg])) {

double temp = ((PyFloatObject *)boxed_float)->ob_fval;

Py_DECREF(boxed_float);

unboxed_float = (*(PyObject **)(&temp));

}

This is the code generated and executed at runtime:

// Retrieved from /Python/generated_cases.c.h

TARGET(UNBOX_FLOAT) {
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PyObject *boxed_float = stack_pointer[-(1 + oparg)];

PyObject *unboxed_float;

double temp = ((PyFloatObject *)boxed_float)->ob_fval;

Py_DECREF(boxed_float);

unboxed_float = (*(PyObject **)(&temp));

stack_pointer[-(1 + oparg)] = unboxed_float;

DISPATCH();

}

One area where this approach differs from the Multi Level Quickening paper is that instead of
representing the operand stack as a C union, it simply uses the fact that 64-bit operating systems
have 64-bit pointers. Since doubles are also 64-bit, the instruction can write the double’s value into
the pointer. This is undefined behavior on non-64 bit systems, and type punning is generally not
recommended as compiler instruction reordering could break the code. However, this approach was
taken to minimise the invasive changes to CPython’s runtime. A production-ready implementation
of this should preferably use C unions.

Unboxed double thus allows for native arithmetic double operations. For example, the following
is an example of a native double addition.

// Retrieved from /Python/bytecodes.c

inst(BINARY_OP_ADD_FLOAT_UNBOXED, (

left, right

--

sum : PyRawFloat_Type)) {

STAT_INC(BINARY_OP, hit);

double temp = *(double *)(&(left)) + *(double *)(&(right));

sum = *(PyObject **)(&temp);

}

This is the code generated and executed at runtime:

// Retrieved from /Python/generated_cases.c.h

TARGET(BINARY_OP_ADD_FLOAT_UNBOXED) {

PyObject *right = stack_pointer[-1];

PyObject *left = stack_pointer[-2];

PyObject *sum;

STAT_INC(BINARY_OP, hit);

double temp = *(double *)(&(left)) + *(double *)(&(right));

sum = *(PyObject **)(&temp);

STACK_SHRINK(1);

stack_pointer[-1] = sum;

DISPATCH();

}

Multiplication and subtraction counterparts were also added. There are multiple benefits to these
operations. Namely, the following are eliminated over operations on PyFloatObject:

• Reference counting
• Type checks
• Pointer chasing
• Intermediate object allocation

To handle cases where a PyFloatObject is needed (such as when passing a double as an argu-
ment to a function call), pyLBBV reboxes the double into a PyFloatObject only when required,
depending on the type context. This is implemented elegantly with a BOX_FLOAT instruction, which
takes a double from the stack, allocates a new PyFloatObject and writes that back.

The following is the CPython instruction DSL definition of BOX_FLOAT. Note the type stack
effect: it writes a PyFloat_Type to the type stack at the oparg’s offset.

15



// Retrieved from /Python/bytecodes.c

inst(BOX_FLOAT,(

raw_float, unused[oparg]

--

boxed_float : PyFloat_Type, unused[oparg])) {

boxed_float = PyFloat_FromDouble(*(double *)(&(raw_float)));

}

This is the code generated and executed at runtime:

// Retrieved from /Python/generated_cases.c.h

TARGET(BOX_FLOAT) {

PyObject *raw_float = stack_pointer[-(1 + oparg)];

PyObject *boxed_float;

boxed_float = PyFloat_FromDouble(*(double *)(&(raw_float)));

stack_pointer[-(1 + oparg)] = boxed_float;

DISPATCH();

}

Finally, the runtime needs to handle cases where an exception may arise. During an exception,
the frame needs to decrement the reference count of all items on the operand stack, as well as the
locals in the locals array. Unboxed values have no reference count and thus this operation should
not be done on them. As such, we store a boolean flag array corresponding to the locals in the
locals array in the frame object, and update this on transitions between boxed and unboxed stores
(and vice versa) to the locals array.

For example, this instruction is emitted when we see that the a boxed local is being overwritten
with an unboxed value.

// Retrieved from /Python/bytecodes.c

inst(STORE_FAST_UNBOXED_BOXED,

(value--),

locals[oparg] = *value) {

SETLOCAL(oparg, value);

_PyFrame_GetUnboxedBitMask(frame)[oparg] = true;

}

This is the code generated and executed at runtime:

// Retrieved from /Python/generated_cases.c.h

TARGET(STORE_FAST_UNBOXED_BOXED) {

PyObject *value = stack_pointer[-1];

SETLOCAL(oparg, value);

_PyFrame_GetUnboxedBitMask(frame)[oparg] = true;

STACK_SHRINK(1);

DISPATCH();

}

Handling unboxed values on the stack during exceptions is left as future work.

5 Results

For benchmarking, this report used a computer with an Intel Core i7-7700HQ processor, with
16GB of RAM running the operating system Ubuntu 22.04 LTS 64-bit. CPython and pyLBBV were
compiled with ./configure --with-lto and make -j8, using the standard build instructions for
CPython and the modified build instructions for pyLBBV (see 8.2). This is equivalent to GCC’s
-O3 flag. CPython release builds recommend enabling Profile-guided Optimisation (PGO) and Link
Time Optimization (LTO). This report only enabled LTO, as PGO requires running a subset of the
CPython test suite for profiling data, and as explained in 8.4, pyLBBV cannot run the CPython
test suite.
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The system was tuned before benchmarking with the pyperf module [8] using the command
pyperf system tune (ran as root user). pyperf is the tool used to tune the system before bench-
marking in pyperformance [9] (CPython’s standard benchmarks suite). The report uses the default
parameters of pyperf system tune, without additional system tuning. This disables Turbo Boost
(dynamic CPU frequency scaling), among many other things. For a full list of pyperf system tune

operations, see [10].

This is the code used to benchmark unboxed float arithmetic:

import time

def f(a, b, loops=200_000_000):

z = a + b

for _ in range(loops):

z + z + z + z + z + z + z + z + z + z + z + z + z + z + z + z

# Warmup

f(1.0 , 2.0, 64)

f(1.0 , 2.0, 64)

# Running the actual benchmark

print("Starting benchmark...")

start = time.perf_counter()

f(1.0 , 2.0)

print("Time taken is", time.perf_counter() - start, "s")

This report acknowledges that the code above is contrived and does not represent real-world
workloads. There is however some speedup (Table 5). The speedup is a demonstration that
pyLBBV’s type propagation and basic optimisations are indeed working. This is the best-case
scenario for pyLBBV as type information is propagated perfectly and all values are unboxed.

This report attempted to benchmark a modified version of the nbody workload from the
pyperformance benchmark suite [9]. pyperformance is “intended to be the authoritative bench-
mark for all Python implementations” [9]. pyperformance is used by CPython to track performance
[11]. However, no speedup was observed for nbody.

Table 5: Benchmark Results

Benchmark CPython main /s pyLBBV /s Relative % speedup over CPython main

bm_float_unboxed 21.91 13.18 39.84

bm_nbody 1 30.73 30.82 -0.29

1Modified from the pyperformance version.

This report attributes the lack of speedup in nbody to a few possible factors:

• pyLBBV generates more instructions at every branch.
• The original lazy basic block versioning [1] paper was a technique for JIT compilation which
generates native machine code with lower execution overhead.

• Arithmetic double operations are ”cheap” in comparison. CPython 3.12 already has Tier 1
specialised instructions for float arithmetic. These instructions re-use intermediate float values
if their reference count is 1, thus eliminating most object allocation.

• nbody includes not just double arithmetic operations, but list subscripting operations and
function calls. These operations require reboxing of double.

• pyLBBV’s PyFloat Type unboxing is somewhat suboptimal, and requires unnecessary rebox-
ing and unboxing at certain places.
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• pyLBBV added over 30 new instructions to CPython’s interpreter, which may have increased
branched mispredictions in the CPython interpreter and increased instruction dispatch
overhead.

6 Project Impact

The types propagator has been submitted for consideration to the Faster CPython team at
Microsoft. So far, the team’s response has been very positive. We are looking to collaborate with
them to get an improved version of the types propagator upstream to CPython when it requires
it. If upstreamed, the types propagator will benefit millions of CPython users worldwide.

pyLBBV is the first (to the best of our knowledge) to implement lazy basic block versioning in
CPython. pyLBBV is also the first in programming language implementation (to the best of our
knowledge) to combine the technique of individual self-specialising instructions (Tier 1 instructions)
with the basic block versioning infrastructure, and with unboxed interpreter arithmetic instructions
(Multi Level Quickening [7]), in an interpreter context.

We suspect that we may have discovered a new type propagation algorithm that integrates with
structural operational semantics. Our understanding of type propagation is that traditionally it
has been done at the abstract syntax tree or control flow graph level. pyLBBV’s type propagation
algorithm allows composing simple type operations to express complex type rules, and adds type
inference to CPython bytecode. This is done without invasive changes and builds on the existing
structural operational semantics of a programming language (which is usually expressed in its
microcode).

Finally, this project generates lower-level Tier 2 CPython bytecode. However, it is possible to
replace the code generation step with one that targets assembly language or CPU microcode. This
would allow for easy integration and testing of a plug-and-play JIT compiler.

7 Future Work

A greater source of speedups may be unboxing small integer arithmetic operations. CPython’s
PyLongObject are arbitrary precision big integers. Their values are stored in C arrays of uint32_t
and thus require custom subroutines for arithmetic operations. It may be possible to unbox 64-
bit integers into C uint64_t and add instructions to operate on these similar to PyFloatObject.
These would require overflow checks after said operations to ensure Python’s arbitrary precision
integer semantics are respected.

Unboxing can be improved if unboxing also unboxes all variables in the same tree as the boxed
PyFloatObject, as opposed to only unboxing the stack variable. This would result in less repeated
unboxing. For this, the type propagator can be used to find the tree’s nodes on the stack and locals
array, and unbox them as well.

We also plan to explore sources of slowdown for pyLBBV, to achieve greater speedups for
targeted workloads.

8 Repository

8.1 Viewing the Project

The repository and branch is located at https://github.com/Fidget-Spinner/cpython/tree/
tier2 interpreter no separate eval no tracer contiguous bbs. To see what exactly has changed ver-
sus CPython’s main branch. Either run the git diff terminal command, or access the following
link https://github.com/Fidget-Spinner/cpython/pull/38/files.

Most changes are located in the file Python/tier2.c.

8.2 Building the Project

A copy of the build instructions is located in the file CS4215.md.
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Building CPython requires different steps depending on your platform. We have tested that
our project compiles on 64-bit Windows 11 and 64-bit Ubuntu 22.04. See https://devguide.python.
org/getting-started/setup-building/.

The biggest change versus the standard CPython build process is that the build system must
have Python >= 3.9 installed already. That Python installation must be aliased to the name
python3 in the terminal. The main reason for this difference is that CPython uses Python to
bootstrap compilation of Python startup bytecode. However, since our runtime cannot run a large
portion of the Python language, our CPython build cannot be used as a bootstrap Python. All
other steps are exactly the same as CPython’s documented build process.

After building, the custom Python executable can be executed with either python.bat on
Windows, or python on Unix-based operating systems. During the build process, errors will arise.
However, the final executable should still be produced.

8.2.1 Compile-time #define Flags

For easier debugging and visualisation of the type propagator and basic block generation,
pyLBBV has two #define flags for developers to modify in Python/tier2.c:

// Retrieved from /Python/tier2.c

// Prints codegen debug messages

#define BB_DEBUG 0

// Prints typeprop debug messages

#define TYPEPROP_DEBUG 0

Setting any of these flags to 1 will enable these features. Note that enabling these flags requires
a debug version of CPython.

8.3 Documentation

Doxygen documentation is written alongside all functions in Python/tier2.c. All functions
are documented with explanations about their behavior.

8.4 Running Tests

After building pyLBBV, run the file tier2_test.py located in the root directory. A lack of
AssertionError indicates that all the tests have passed.

pyLBBV’s test suite tests for nearly all optimisations that pyLBBV performs. The following
are tested:

• Backward jumps
• Loop peeling
• Double unboxing
• Guard elimination for arithmetic and containers
• Support for type polymorphism
• Tier 2 BB_TEST_ITER specialisation

pyLBBV’s tests pass on 64-bit Windows 11 and 64-bit Ubuntu 22.04. 64-bit macOS is not
tested. pyLBBV tests cover the main features of the runtime. However, due to the experimental
nature of this project, and the scope of the Python language, we are unable to write tests that are
as comprehensive as we would like.

pyLBBV does not pass the CPython test suite, as it does not support a large portion of the
Python.
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8.5 Benchmark Scripts and Results

The benchmark scripts are bm_nbody.py and bm_float_unboxed.py in the root directory.
Their results and the respective commit and branch they were ran against is found in the directory
/tier2_results/.
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Appendix A Dynamic Semantics from DSL to Type
Propagator Behaviour

We introduce some notation. We denote literal to be a typeliteral, unknown to be a typeliteral
that has the value NULL, expr to be an expression where the only free variable (if any) is oparg,
and xn to be the n-th input/output stack variable from the left. In the absence of a superscript,
the position of the stack variable is assumed to not matter. Input/output will be distinguished by
"--" . For instance, for the instruction header:

inst(BINARY_CHECK_INT, (

left, right
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--

left: <<= PyLong_Type, right: <<= PyLong_Type))

The left input/output variable can be represented as x1 and the right input/output variable as
y2. Further, we denote ϵ as the “do nothing” operation. We can now write the formal specification:

dst = "unused"

"--" dst ≫ ϵ
[Unused Var]

src = dst

srcn "--" dst ≫ ϵ
[Unmoved Var]

src ̸= dst

src "--" dst ≫ TYPE OVERWRITE(dst, unknown)
[New Stackvar]

dst ̸= "unused"

"--" dst "[" expr "]" ≫ ∀i ∈ [0, expr− 1] ∩ Z, TYPE OVERWRITE(dst[i], unknown)
[New Sized Stackvar]

"--" dst ":" literal ≫ TYPE OVERWRITE(dst, literal)
[Literal Typeoverwrite]

src "--" dst ":" "*" src ≫ TYPE OVERWRITE(dst, src)
[Input Typeoverwrite]

"--" dst ":" "locals" "[" expr "]" ≫ TYPE OVERWRITE(dst, GET LOCAL(expr))
[Locals Typeoverwrite]

"--" dst ":" "consts" "[" expr "]" ≫ TYPE OVERWRITE(dst, GET CONST(expr))
[Consts Typeoverwrite]

"--" dst ":" "<<=" literal ≫ TYPE SET(dst, literal)
[Literal Typeset]

src "--" dst ":" "<<=" src ≫ TYPE SET(dst, src)
[Input Typeset]

"--" dst ":" "<<=" "locals" "[" expr "]" ≫ TYPE SET(dst, GET LOCAL(expr))
[Locals Typeset]

"--" dst ":" "<<=" "consts" "[" expr "]" ≫ TYPE SET(dst, GET CONST(expr))
[Consts Typeset]

m ̸= n

xm, yn "--" am ":" "*" y, bn ":" "*" x ≫ TYPE SWAP(x, y)
[Typeswap]

"locals" "[" expr "]" "=" literal ≫ TYPE OVERWRITE(GET LOCAL(expr), literal)
[Literal Localeffect]

"locals" "[" expr "]" "=" "*" src ≫ TYPE OVERWRITE(GET LOCAL(expr), src)
[Input Localeffect]

Note how pyLBBV handles type propagation when no type annotations are present. This allows
pyLBBV to generate the type propagator even when only a few instructions are annotated. What
is not specified above is the case when the type annotation contains a list of type operations, such
as BINARY_CHECK_FLOAT which performs unboxing as well:

// Retrieved from /Python/bytecodes.c

inst(BINARY_CHECK_FLOAT, (

left, right

--

left_unboxed : {<<= PyFloat_Type, PyRawFloat_Type},

right_unboxed : {<<= PyFloat_Type, PyRawFloat_Type})

In this case the type operations are performed from left to right. With these specifications we
can generate the type propagator. For instance, the specifications above for BINARY_CHECK_FLOAT
generates the following for the type propagator:

// Retrieved from /Python/tier2_typepropagator.c.h

TARGET(BINARY_CHECK_FLOAT) {

TYPE_SET(

(_Py_TYPENODE_t *)_Py_TYPENODE_MAKE_ROOT(

(_Py_TYPENODE_t)&PyFloat_Type),

TYPESTACK_PEEK(1), true);

TYPE_OVERWRITE(

(_Py_TYPENODE_t *)_Py_TYPENODE_MAKE_ROOT(
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(_Py_TYPENODE_t)&PyRawFloat_Type),

TYPESTACK_PEEK(1), true);

TYPE_SET(

(_Py_TYPENODE_t *)_Py_TYPENODE_MAKE_ROOT(

(_Py_TYPENODE_t)&PyFloat_Type),

TYPESTACK_PEEK(2), true);

TYPE_OVERWRITE(

(_Py_TYPENODE_t *)_Py_TYPENODE_MAKE_ROOT(

(_Py_TYPENODE_t)&PyRawFloat_Type),

TYPESTACK_PEEK(2), true);

break;

}

Refer to https://github.com/Fidget-Spinner/cpython/blob/tier2 interpreter no separate eval
no tracer contiguous bbs/Python/tier2 typepropagator.c.h for the generated code.
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