# A Brief Overview of A3S

### pot

### July 21, 2021

#### Abstract

A3S is a cipher inspired by AES and base 3. It was developed for the 2021 RaRCTF competition but it may be used again in the future. This document will be a brief overview of A3S and should give you some understanding so reading code is easier. However, it will not cover implementation of finite field arithmetic and such.

### Contents

| 1        | Definitions      |               |   |  |
|----------|------------------|---------------|---|--|
| <b>2</b> | Input and Output |               |   |  |
| 3        | The cipher       |               |   |  |
|          | 3.1              | The algorithm | 2 |  |
|          | 3.2              | Substitution  | 2 |  |
|          | 3.3              | Shift rows    | 2 |  |
|          | 3.4              | Mix columns   | 3 |  |
|          | 3.5              | Round keys    | 3 |  |

#### Definitions 1

| Trit  | A unit having one of three values $(0, 1, 2)$ . |
|-------|-------------------------------------------------|
| Tryte | 3 trits.                                        |

- Word 3 trytes.
- LE Little-endian
- ΒE **Big-endian**
- RM Row-major order

### 2 Input and Output

A tryte array is needed but data given is usually in bytes. One way to convert is to and from an integer. The tryte array will be used as a matrix.

$$B_0, B_1 \dots \xrightarrow{BE} I \xrightarrow{LE} T_0, T_1 \dots \xrightarrow{RM} \begin{bmatrix} T_0 & T_1 & T_2 \\ T_3 & T_4 & T_5 \\ T_6 & T_7 & T_8 \end{bmatrix}$$

This process can be reversed for an output.

## 3 The cipher

### 3.1 The algorithm

Input: Plaintext P (Trytes) Key K (Trytes) Output: Ciphertext C  $K_{0\cdots N} \leftarrow Expand(K)$   $C \leftarrow Apply(P, K_0)$ for  $i \leftarrow 1$  to N - 1 do  $\begin{vmatrix} C \leftarrow Substitute(C) \\ C \leftarrow Mix(C) \\ C \leftarrow Apply(C, K_i) \end{vmatrix}$ end  $C \leftarrow Substitute(C)$   $C \leftarrow Shift(C)$   $C \leftarrow Apply(C, K_N)$ return C

### 3.2 Substitution

Trytes are replaced using a table of values. For example, 1 could be changed to 16 during this step.

#### 3.3 Shift rows

The trytes are rearranged. Different letters will be used to make this more easier to see.



### 3.4 Mix columns

Every column in the matrix will be written as a polynomial then multiplied by a constant in a polynomial ring (b).

$$f(A_{old}, B_{old}, C_{old}) = constant * (C_{old} * b^2 + B_{old} * b + A_{old})$$
$$= C_{new} * b^2 + B_{new} * b + A_{new}$$

The coefficients of the result with respect to a are used to replace the original values. For example, the location of  $C_{old}$  will now have the value  $C_{new}$ .

### 3.5 Round keys

The number of keys generated is represented as the following where x is the length of the tryte array. x also needs to be greater than 0.

$$f(x) = \lceil x/3 \rceil + 3$$
$$= N$$

The + 3 means extra keys are created compared to the original AES for added "security". Moving on, round constants are defined as the powers of a in the finite field.

$$f(x) = a^x$$
$$= rcon_x$$

L will be used to represent the expanded key and K being the original key and M as its length. i will go from 0 to 3N - 1 (Shamelessly stolen from Wikipedia). Rot moves the first tryte to the end and Sub applies substitution to all trytes. The rcon will only be applied to the first tryte.

$$L_{i} = \begin{cases} K_{i} & \text{if } i < M\\ L_{i-M} \oplus Sub(Rot(L_{i-1})) \oplus rcon_{i/M} & \text{if } i \equiv 0 \pmod{M} \text{ and } i \neq 0\\ L_{i-M} \oplus L_{i-1} & \text{otherwise} \end{cases}$$

Once the key words are generated they are packed in 3s to produce a 3x3 matrix of keys.

$$W = \begin{bmatrix} T_0 & T_1 & T_2 \end{bmatrix}$$
$$\begin{bmatrix} W_0 \\ W_1 \\ W_2 \end{bmatrix} \longrightarrow \begin{bmatrix} T_0 & T_1 & T_2 \\ T_3 & T_4 & T_5 \\ T_6 & T_7 & T_8 \end{bmatrix}$$

Applying them to the plaintext is as simple as adding (in GF(3)) to their corresponding element.