A Brief Overview of A3S

pot

July 21, 2021

Abstract

A3S is a cipher inspired by AES and base 3. It was developed for the 2021 RaRCTF competition but it may be used again in the future. This document will be a brief overview of A3S and should give you some understanding so reading code is easier. However, it will not cover implementation of finite field arithmetic and such.

Contents

1 Definitions 1
2 Input and Output 2
3 The cipher 2
3.1 The algorithm. 2
3.2 Substitution 2
3.3 Shift rows 2
3.4 Mix columns 3
3.5 Round keys 3

1 Definitions

Trit A unit having one of three values ($0,1,2$).
Tryte 3 trits.
Word 3 trytes.
LE Little-endian
BE Big-endian
RM Row-major order

2 Input and Output

A tryte array is needed but data given is usually in bytes. One way to convert is to and from an integer. The tryte array will be used as a matrix.

$$
B_{0}, B_{1} \ldots \xrightarrow{B E} I \xrightarrow{L E} T_{0}, T_{1} \ldots \xrightarrow{R M}\left[\begin{array}{lll}
T_{0} & T_{1} & T_{2} \\
T_{3} & T_{4} & T_{5} \\
T_{6} & T_{7} & T_{8}
\end{array}\right]
$$

This process can be reversed for an output.

3 The cipher

3.1 The algorithm

```
Input: Plaintext \(P\) (Trytes)
Key K (Trytes)
Output: Ciphertext \(C\)
\(K_{0 \cdots N} \leftarrow \operatorname{Expand}(K)\)
\(C \leftarrow \operatorname{Apply}\left(P, K_{0}\right)\)
for \(i \leftarrow 1\) to \(N-1\) do
    \(C \leftarrow\) Substitute \((C)\)
    \(C \leftarrow \operatorname{Shift}(C)\)
    \(C \leftarrow \operatorname{Mix}(C)\)
    \(C \leftarrow \operatorname{Apply}\left(C, K_{i}\right)\)
end
\(C \leftarrow\) Substitute \((C)\)
\(C \leftarrow \operatorname{Shift}(C)\)
\(C \leftarrow \operatorname{Apply}\left(C, K_{N}\right)\)
return \(C\)
```


3.2 Substitution

Trytes are replaced using a table of values. For example, 1 could be changed to 16 during this step.

3.3 Shift rows

The trytes are rearranged. Different letters will be used to make this more easier to see.

A_{0}	A_{1}	A_{2}				
B_{0}	B_{1}	B_{2}				
C_{0}	C_{1}	C_{2}	\longrightarrow	A_{0}	A_{1}	A_{2}
:---:	:---:	:---:				
B_{1}	B_{2}	B_{0}				
C_{2}	C_{0}	C_{1}				

3.4 Mix columns

Every column in the matrix will be written as a polynomial then multiplied by a constant in a polynomial ring (b).

$$
\begin{aligned}
f\left(A_{\text {old }}, B_{\text {old }}, C_{o l d}\right) & =\text { constant } *\left(C_{\text {old }} * b^{2}+B_{\text {old }} * b+A_{\text {old }}\right) \\
& =C_{\text {new }} * b^{2}+B_{\text {new }} * b+A_{\text {new }}
\end{aligned}
$$

The coefficients of the result with respect to a are used to replace the original values. For example, the location of $C_{\text {old }}$ will now have the value $C_{n e w}$.

3.5 Round keys

The number of keys generated is represented as the following where x is the length of the tryte array. x also needs to be greater than 0 .

$$
\begin{aligned}
f(x) & =\lceil x / 3\rceil+3 \\
& =N
\end{aligned}
$$

The +3 means extra keys are created compared to the original AES for added "security". Moving on, round constants are defined as the powers of a in the finite field.

$$
\begin{aligned}
f(x) & =a^{x} \\
& =\operatorname{rcon}_{x}
\end{aligned}
$$

L will be used to represent the expanded key and K being the original key and M as its length. i will go from 0 to $3 N-1$ (Shamelessly stolen from Wikipedia). Rot moves the first tryte to the end and $S u b$ applies substitution to all trytes. The rcon will only be applied to the first tryte.

$$
L_{i}=\left\{\begin{array}{ll}
K_{i} & \text { if } i<M \\
L_{i-M} \oplus \operatorname{Sub}\left(\operatorname{Rot}\left(L_{i-1}\right)\right) \oplus \operatorname{rcon}_{i / M} & \text { if } i \equiv 0 \\
L_{i-M} \oplus L_{i-1} & \text { otherwise }
\end{array}(\bmod M) \text { and } i \neq 0\right.
$$

Once the key words are generated they are packed in 3 s to produce a $3 x 3$ matrix of keys.

$$
\begin{gathered}
W=\left[T_{0} T_{1} T_{2}\right] \\
{\left[\begin{array}{l}
W_{0} \\
W_{1} \\
W_{2}
\end{array}\right] \xrightarrow{\longrightarrow}\left[\begin{array}{lll}
T_{0} & T_{1} & T_{2} \\
T_{3} & T_{4} & T_{5} \\
T_{6} & T_{7} & T_{8}
\end{array}\right]}
\end{gathered}
$$

Applying them to the plaintext is as simple as adding (in GF(3)) to their corresponding element.

